
Chapter 3

Linear Regression

Once we’ve acquired data with multiple variables, one very important question is how the
variables are related. For example, we could ask for the relationship between people’s weights
and heights, or study time and test scores, or two animal populations. Regression is a set
of techniques for estimating relationships, and we’ll focus on them for the next two chapters.

In this chapter, we’ll focus on finding one of the simplest type of relationship: linear. This
process is unsurprisingly called linear regression, and it has many applications. For exam-
ple, we can relate the force for stretching a spring and the distance that the spring stretches
(Hooke’s law, shown in Figure 3.1a), or explain how many transistors the semiconductor
industry can pack into a circuit over time (Moore’s law, shown in Figure 3.1b).

Despite its simplicity, linear regression is an incredibly powerful tool for analyzing data.
While we’ll focus on the basics in this chapter, the next chapter will show how just a few
small tweaks and extensions can enable more complex analyses.
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(a) In classical mechanics, one could empiri-
cally verify Hooke’s law by dangling a mass
with a spring and seeing how much the spring
is stretched.

(b) In the semiconductor industry, Moore’s
law is an observation that the number of
transistors on an integrated circuit doubles
roughly every two years.

Figure 3.1: Examples of where a line fit explains physical phenomena and engineering feats.1

1The Moore’s law image is by Wgsimon (own work) [CC-BY-SA-3.0 or GFDL], via Wikimedia Commons.
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But just because fitting a line is easy doesn’t mean that it always makes sense. Let’s take
another look at Anscombe’s quartet to underscore this point.

Example: Anscombe’s Quartet Revisited

Recall Anscombe’s Quartet: 4 datasets with very similar statistical properties under a simple quanti-
tative analysis, but that look very different. Here they are again, but this time with linear regression
lines fitted to each one:
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For all 4 of them, the slope of the regression line is 0.500 (to three decimal places) and the intercept is
3.00 (to two decimal places). This just goes to show: visualizing data can often reveal patterns that are
hidden by pure numeric analysis!

We begin with simple linear regression in which there are only two variables of interest
(e.g., weight and height, or force used and distance stretched). After developing intuition
for this setting, we’ll then turn our attention to multiple linear regression, where there
are more variables.

Disclaimer: While some of the equations in this chapter might be a little intimidating,
it’s important to keep in mind that as a user of statistics, the most important thing is to
understand their uses and limitations. Toward this end, make sure not to get bogged down
in the details of the equations, but instead focus on understanding how they fit in to the big
picture.

� 3.1 Simple linear regression

We’re going to fit a line y = β0 + β1x to our data. Here, x is called the independent
variable or predictor variable, and y is called the dependent variable or response
variable.

Before we talk about how to do the fit, let’s take a closer look at the important quantities
from the fit:

• β1 is the slope of the line: this is one of the most important quantities in any linear
regression analysis. A value very close to 0 indicates little to no relationship; large
positive or negative values indicate large positive or negative relationships, respectively.
For our Hooke’s law example earlier, the slope is the spring constant2.

2Since the spring constant k is defined as F = −kx (where F is the force and x is the stretch), the slope
in Figure 3.1a is actually the inverse of the spring constant.
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• β0 is the intercept of the line.

In order to actually fit a line, we’ll start with a way to quantify how good a line is. We’ll
then use this to fit the “best” line we can.

One way to quantify a line’s “goodness” is to propose a probabilistic model that generates
data from lines. Then the “best” line is the one for which data generated from the line is
“most likely”. This is a commonly used technique in statistics: proposing a probabilistic
model and using the probability of data to evaluate how good a particular model is. Let’s
make this more concrete.

A probabilistic model for linearly related data

We observe paired data points (x1, y1), (x2, y2), . . . , (xn, yn), where we assume that as a func-
tion of xi, each yi is generated by using some true underlying line y = β0 + β1x that we
evaluate at xi, and then adding some Gaussian noise. Formally,

yi = β0 + β1xi + εi. (3.1)

Here, the noise εi represents the fact that our data won’t fit the model perfectly. We’ll model
εi as being Gaussian: ε ∼ N (0, σ2). Note that the intercept β0, the slope β1, and the noise
variance σ2 are all treated as fixed (i.e., deterministic) but unknown quantities.

Solving for the fit: least-squares regression

Assuming that this is actually how the data (x1, y1), . . . , (xn, yn) we observe are generated,
then it turns out that we can find the line for which the probability of the data is highest
by solving the following optimization problem3:

min
β0,β1

:
n∑
i=1

[yi − (β0 + β1xi)]
2 , (3.2)

where minβ0,β1 means “minimize over β0 and β1”. This is known as the least-squares linear
regression problem. Given a set of points, the solution is:

β̂1 =

∑n
i=1 xiyi −

1
n

∑n
i=1 xi

∑n
i=1 yi∑n

i=1 x
2
i − 1

n
(
∑n

i=1 xi)
2

(3.3)

= r
sy
sx
, (3.4)

β̂0 = ȳ − β̂1x̄, (3.5)

3This is an important point: the assumption of Gaussian noise leads to squared error as our minimization
criterion. We’ll see more regression techniques later that use different distributions and therefore different
cost functions.
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Figure 3.2: An illustration of correlation strength. Each plot shows data with a particular correla-
tion coefficient r. Values farther than 0 (outside) indicate a stronger relationship than values closer
to 0 (inside). Negative values (left) indicate an inverse relationship, while positive values (right)
indicate a direct relationship.

where x̄, ȳ, sx and sy are the sample means and standard deviations for x values and y
values, respectively, and r is the correlation coefficient, defined as

r =
1

n− 1

n∑
i=1

(xi − x̄
sx

)(yi − ȳ
sy

)
. (3.6)

By examining the second equation for the estimated slope β̂1, we see that since sample
standard deviations sx and sy are positive quantities, the correlation coefficient r, which is
always between −1 and 1, measures how much x is related to y and whether the trend is
positive or negative. Figure 3.2 illustrates different correlation strengths.

The square of the correlation coefficient r2 will always be positive and is called the coefficient
of determination. As we’ll see later, this also is equal to the proportion of the total
variability that’s explained by a linear model.

As an extremely crucial remark, correlation does not imply causation! We devote the entire
next page to this point, which is one of the most common sources of error in interpreting
statistics.
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Example: Correlation and Causation

Just because there’s a strong correlation between two variables, there isn’t necessarily a causal rela-
tionship between them. For example, drowning deaths and ice-cream sales are strongly correlated, but
that’s because both are affected by the season (summer vs. winter). In general, there are several possible
cases, as illustrated below:

x y

x y

(a) Causal link: Even
if there is a causal link
between x and y, corre-
lation alone cannot tell
us whether y causes x or
x causes y.

x y

z

(b) Hidden Cause:
A hidden variable z
causes both x and y,
creating the correla-
tion.

x y

z

(c) Confounding
Factor: A hidden
variable z and x
both affect y, so the
results also depend
on the value of z.

x y

(d) Coincidence:
The correlation just
happened by chance
(e.g. the strong cor-
relation between sun
cycles and number
of Republicans in
Congress, as shown
below).

(e) The number of Republican senators in congress (red) and the sunspot num-
ber (blue, before 1986)/inverted sunspot number (blue, after 1986). This fig-
ure comes from http://www.realclimate.org/index.php/archives/2007/05/

fun-with-correlations/.

Figure 3.3: Different explanations for correlation between two variables. In this diagram, arrows represent causation.
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� 3.2 Tests and Intervals

Recall from last time that in order to do hypothesis tests and compute confidence intervals,
we need to know our test statistic, its standard error, and its distribution. We’ll look at the
standard errors for the most important quantities and their interpretation. Any statistical
analysis software can compute these quantities automatically, so we’ll focus on interpreting
and understanding what comes out.

Warning: All the statistical tests here crucially depend on the assumption that the observed
data actually comes from the probabilistic model defined in Equation (3.1)!

� 3.2.1 Slope

For the slope β1, our test statistic is

tβ1 =
β̂1 − β1

sβ1
, (3.7)

which has a Student’s t distribution with n − 2 degrees of freedom. The standard error of
the slope sβ1 is

sβ1 =
σ̂√√√√√√

n∑
i=1

(xi − x̄)2

︸ ︷︷ ︸
how close together x values are

(3.8)

and the mean squared error σ̂2 is

σ̂2 =

how large the errors are︷ ︸︸ ︷
n∑
i=1

(ŷi − yi)2

n− 2
(3.9)

These terms make intuitive sense: if the x-values are all really close together, it’s harder to
fit a line. This will also make our standard error sβ1 larger, so we’ll be less confident about
our slope. The standard error also gets larger as the errors grow, as we should expect it to:
larger errors should indicate a worse fit.

� 3.2.2 Intercept

For the intercept β0, our test statistic is

tβ0 =
β̂0 − β0

sβ0
, (3.10)
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Figure 3.4: The test statistic for the correlation coefficient r for n = 10 (blue) and n = 100 (green).

which is also t-distributed with n− 2 degrees of freedom. The standard error is

sβ0 = σ̂

√
1

n
+

x̄2∑
i(xi − x̄)2

, (3.11)

and σ̂ is given by Equation (3.9).

� 3.2.3 Correlation

For the correlation coefficient r, our test statistic is the standardized correlation

tr = r

√
n− 2

1− r2
, (3.12)

which is t-distributed with n− 2 degrees of freedom. Figure 3.4 plots tr against r.

� 3.2.4 Prediction

Let’s look at the prediction at a particular value x∗, which we’ll call ŷ(x∗). In particular:

ŷ(x∗) = β̂0 + β̂1x
∗.

We can do this even if x∗ wasn’t in our original dataset.

Let’s introduce some notation that will help us distinguish between predicting the line versus
predicting a particular point generated from the model. From the probabilistic model given
by Equation (3.1), we can similarly write how y is generated for the new point x∗:

y(x∗) = β0 + β1x
∗︸ ︷︷ ︸

defined as µ(x∗)

+ε, (3.13)

where ε ∼ N (0, σ2).
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Then it turns out that the standard error sµ̂ for estimating µ(x∗) (i.e., the mean of the line
at point x∗) using ŷ(x∗) is:

sµ̂ = σ̂

√√√√√ 1

n
+

(x∗ − x̄)∑n
i=1(xi − x̄)2︸ ︷︷ ︸

distance from “comfortable prediction region”

.

This makes sense because if we’re trying to predict for a point that’s far from the mean,
then we should be less sure, and our prediction should have more variance. To compute the
standard error for estimating a particular point y(x∗) and not just its mean µ(x∗), we’d also
need to factor in the extra noise term ε in Equation (3.13):

sŷ = σ̂

√√√√ 1

n
+

(x∗ − x̄)∑
i(xi − x̄)2

+1︸︷︷︸
added

.

While both of these quantities have the same value when computed from the data, when
analyzing them, we have to remember that they’re different random variables: ŷ has more
variation because of the extra ε.

Interpolation vs. extrapolation

As a reminder, everything here crucially depends on the probabilistic model given by Equa-
tion (3.1) being true. In practice, when we do prediction for some value of x we haven’t seen
before, we need to be very careful. Predicting y for a value of x that is within the interval
of points that we saw in the original data (the data that we fit our model with) is called
interpolation. Predicting y for a value of x that’s outside the range of values we actually
saw for x in the original data is called extrapolation.

For real datasets, even if a linear fit seems appropriate, we need to be extremely careful
about extrapolation, which can often lead to false predictions!
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Example: The perils of extrapolation

By fitting a line to the Rotten Tomatoes ratings for movies that M. Night Shyamalan directed over time,
one may erroneously be led to believe that in 2014 and onward, Shyamalan’s movies will have negative
ratings, which isn’t even possible!

y = -4.6531x + 9367.7 
R² = 0.6875 
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� 3.3 Multiple Linear Regression

Now, let’s talk about the case when instead of just a single scalar value x, we have a vector
(x1, . . . , xp) for every data point i. So, we have n data points (just like before), each with p
different predictor variables or features. We’ll then try to predict y for each data point as
a linear function of the different x variables:

y = β1x1 + β2x2 + · · ·+ βpxp. (3.14)

Even though it’s still linear, this representation is very versatile; here are just a few of the
things we can represent with it:

9
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• Multiple dependent variables: for example, suppose we’re trying to predict medical
outcome as a function of several variables such as age, genetic susceptibility, and clinical
diagnosis. Then we might say that for each patient, x1 = age, x2 = genetics, x3 =
diagnosis, and y = outcome.

• Nonlinearities: Suppose we want to predict a quadratic function y = ax2 +bx+c: then
for each data point we might say x1 = 1, x2 = x, and x3 = x2. This can easily be
extended to any nonlinear function we want.

One may ask: why not just use multiple linear regression and fit an extremely high-degree
polynomial to our data? While the model then would be much richer, one runs the risk of
overfitting, where the model is so rich that it ends up fitting to the noise! We illustrate
this with an example; it’s also illustrated by a song4.

Example: Overfitting

Using too many features or too complex of a model can often lead to overfitting. Suppose we want to
fit a model to the points in Figure 3.3(a). If we fit a linear model, it might look like Figure 3.3(b). But,
the fit isn’t perfect. What if we use our newly acquired multiple regression powers to fit a 6th order
polynomial to these points? The result is shown in Figure 3.3(c). While our errors are definitely smaller
than they were with the linear model, the new model is far too complex, and will likely go wrong for
values too far outside the range.
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(b) The same set of points
with a linear fit (blue).
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(c) The same points with
a 6th-order polynomial fit
(green). As before, the linear
fit is shown in blue.

We’ll talk a little more about this in Chapters 4 and 5.

We’ll represent our input data in matrix form as X, an x× p matrix where each row corre-
sponds to a data point and each column corresponds to a feature. Since each output yi is
just a single number, we’ll represent the collection as an n-element column vector y. Then
our linear model can be expressed as

y = Xβ + ε (3.15)

4Machine Learning A Cappella, Udacity. https://www.youtube.com/watch?v=DQWI1kvmwRg
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where β is a p-element vector of coefficients, and ε is an n-element matrix where each element,
like εi earlier, is normal with mean 0 and variance σ2. Notice that in this version, we haven’t
explicitly written out a constant term like β0 from before. We’ll often add a column of
1s to the matrix X to accomplish this (try multiplying things out and making sure you
understand why this solves the problem). The software you use might do this automatically,
so it’s something worth checking in the documentation.

This leads to the following optimization problem:

min
β

n∑
i=1

(yi −Xiβ)2 , (3.16)

where minβ . just means “find values of β that minimize the following”, and Xi refers to row
i of the matrix X.

We can use some basic linear algebra to solve this problem and find the optimal estimates:

β̂ = (XTX)−1XTy, (3.17)

which most computer programs will do for you. Once we have this, what conclusions can
we make with the help of statistics? We can obtain confidence intervals and/or hypothesis
tests for each coefficient, which most statistical software will do for you. The test statistics
are very similar to their counterparts for simple linear regression.

It’s important not to blindly test whether all the coefficients are greater than zero: since this
involves doing multiple comparisons, we’d need to correct appropriately using Bonferroni
correction or FDR correction as described in the last chapter. But before even doing that,
it’s often smarter to measure whether the model even explains a significant amount of the
variability in the data: if it doesn’t, then it isn’t even worth testing any of the coefficients
individually. Typically, we’ll use an analysis of variance (ANOVA) test to measure this.
If the ANOVA test determines that the model explains a significant portion of the variability
in the data, then we can consider testing each of the hypotheses and correcting for multiple
comparisons.

We can also ask about which features have the most effect: if a feature’s coefficient is 0 or
close to 0, then that feature has little to no impact on the final result. We need to avoid the
effect of scale: for example, if one feature is measured in feet and another in inches, even if
they’re the same, the coefficient for the feet feature will be twelve times larger. In order to

avoid this problem, we’ll usually look at the standardized coefficients β̂k
sβ̂k

.

� 3.4 Model Evaluation

How can we measure the performance of our model? Suppose for a moment that every point
yi was very close to the mean ȳ: this would mean that each yi wouldn’t depend on xi, and
that there wasn’t much random error in the value either. Since we expect that this shouldn’t
be the case, we can try to understand how much the prediction from xi and random error
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(xi , yi )

(x , ŷ)

ŷi − ȳ

y − ŷi

Figure 3.5: An illustration of the components contributing to the difference between the average
y-value ȳ and a particular point (xi, yi) (blue). Some of the difference, ŷi − ȳ, can be explained by
the model (orange), and the remainder, yi − ŷi, is known as the residual (green).

contribute to yi. In particular, let’s look at how far yi is from the mean ȳ. We’ll write this
difference as:

yi − ȳ = (ŷi − ȳ)︸ ︷︷ ︸
difference explained by model

+ (yi − ŷi)︸ ︷︷ ︸
difference not explained by model

(3.18)

In particular, the residual is defined to be yi− ŷi: the distance from the original data point
to the predicted value on the line. You can think of it as the error left over after the model
has done its work. This difference is shown graphically in Figure 3.5. Note that the residual
yi − ŷ isn’t quite the same as the noise ε! We’ll talk a little more about analyzing residuals
(and why this distinction matters) in the next chapter.

If our model is doing a good job, then it should explain most of the difference from ȳ, and
the first term should be bigger than the second term. If the second term is much bigger,
then the model is probably not as useful.

If we square the quantity on the left, work through some algebra, and use some facts about
linear regression, we’ll find that∑

i

(yi − ȳ)2

︸ ︷︷ ︸
SStotal

=
∑
i

(ŷi − ȳ)2

︸ ︷︷ ︸
SSmodel

+
∑
i

(yi − ŷi)2

︸ ︷︷ ︸
SSerror

, (3.19)

where “SS” stands for “sum of squares”. These terms are often abbreviated as SST, SSM,
and SSE respectively.

If we divide through by SST, we obtain

1 =
SSM

SST︸ ︷︷ ︸
r2

+
SSE

SST︸︷︷︸
1−r2

,
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where we note that r2 is precisely the coefficient of determination mentioned earlier. Here,
we see why r2 can be interpreted as the fraction of variability in the data that is explained
by the model.

One way we might evaluate a model’s performance is to compare the ratio SSM/SSE. We’ll
do this with a slight tweak: we’ll instead consider the mean values, MSM = SSM/(p−1) and
MSE = SSE/(n− p), where the denominators correspond to the degrees of freedom. These
new variables MSM and MSE have χ2 distributions, and their ratio

f =
MSM

MSE
(3.20)

has what’s known as an F distribution with parameters p− 1 and n− p. The widely used
ANOVA test for categorical data, which we’ll see in Chapter 6, is based on this F statistic:
it’s a way of measuring how much of the variability in the data is from the model and how
much is from random error, and comparing the two.
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