Confidence Intervals
Oliver d’Pug
Bootstrap Confidence Intervals
The bootstrap can be used to find an approximate sampling distribution for a given estimator/statistic — the bootstrap distribution. Quantiles of this distribution provide an easy way to generate a confidence interval for the statistic.
The Mean
Consider the sample mean, . We can use the boot package to find the bootstrap distribution. We do so for the Weight data.
  htwt <- read.csv("http://facweb1.redlands.edu/fac/jim_bentley/data/Math%20312/regression/htwt.csv")
  head(htwt)
  Height Weight Group
1     64    159     1
2     63    155     2
3     67    157     2
4     60    125     1
5     52    103     2
6     58    122     2
  ggplot(htwt, aes(x=Weight)) + geom_histogram(binwidth = 10)
[image: CIs_files/figure-docx/unnamed-chunk-1-1.png]
  ggplot(htwt, aes(x=Weight)) + geom_dotplot() + ylab("Proportion")
Bin width defaults to 1/30 of the range of the data. Pick better value with
`binwidth`.
[image: CIs_files/figure-docx/unnamed-chunk-1-2.png]
  b.mean <- function(d, i){mean(d[i])}
  wt.mean.boot <- boot(htwt$Weight, b.mean, R=9999)
  wt.mean.boot

ORDINARY NONPARAMETRIC BOOTSTRAP


Call:
boot(data = htwt$Weight, statistic = b.mean, R = 9999)


Bootstrap Statistics :
    original    bias    std. error
t1*    139.6 0.1483898    9.400818
  plot(wt.mean.boot)
[image: CIs_files/figure-docx/unnamed-chunk-1-3.png]
While the raw data appear to be non-normally distributed — abnormal? — the distribution of means seems to be normal. Apparently the Central Limit Theorem has kicked in. Note that the estimator appears to be unbiased. The standard error is estimated to be 9.4008176. This is close to  9.6423954. All of this is interesting and useful — later.
To get the bootstrap confidence interval, we use a quantile approach. We can trap a proportion of ``plausible’’ values between two values found by trimming the required percentages off of each end.
  quantile(wt.mean.boot$t, c(0.005, 0.025, 0.05, 0.95, 0.975, 0.995))
    0.5%     2.5%       5%      95%    97.5%    99.5% 
116.4990 121.9500 124.4000 155.4500 158.4000 164.6515 
We see that a 95% CI for the mean is 121.95 to 158.4 and a 99% CI for the mean is 116.499 to 164.6515.
The confidence intervals from above, and in particular the Percentile method, are similar to those given by the boot.ci function below.
  boot.ci(wt.mean.boot)
Warning in boot.ci(wt.mean.boot): bootstrap variances needed for studentized
intervals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 9999 bootstrap replicates

CALL : 
boot.ci(boot.out = wt.mean.boot)

Intervals : 
Level      Normal              Basic         
95%   (121.0, 157.9 )   (120.8, 157.2 )  

Level     Percentile            BCa          
95%   (122.0, 158.4 )   (122.4, 159.3 )  
Calculations and Intervals on Original Scale
The Normal CI given above is calculated as  or  where ,  is the confidence level, and  is the bootstrap standard error.
The Median
Consider the sample median, , chosen such that . We can use the boot package to find the bootstrap distribution of the sample median. We do so using the Weight data from above.
  b.median <- function(d, i){median(d[i])}
  wt.median.boot <- boot(htwt$Weight, b.median, R=9999)
  wt.median.boot

ORDINARY NONPARAMETRIC BOOTSTRAP


Call:
boot(data = htwt$Weight, statistic = b.median, R = 9999)


Bootstrap Statistics :
    original   bias    std. error
t1*    123.5 8.084658    15.97414
  plot(wt.median.boot)
[image: CIs_files/figure-docx/unnamed-chunk-4-1.png]
While the distribution of the bootstrap means seems to be normal, the distribution of the bootstrap medians does not. Since the Central Limit Theorem is a statement about the asymptotic distribution of sums of random variables (recalling the proof and the use of ), this should not be surprising. Note that the estimator appears to be biased. The standard error is estimated to be 15.974143.
Because of the granularity of the bootstrap distribution we might be uncomfortable computing the bootstrap confidence interval for the median.
  quantile(wt.median.boot$t, c(0.005, 0.025, 0.05, 0.95, 0.975, 0.995))
 0.5%  2.5%    5%   95% 97.5% 99.5% 
105.5 111.0 112.0 157.0 158.0 174.5 
One suggested method for dealing with the granularity is to add a little random noise to smooth things out. Some authors suggest using 
  hist(wt.median.boot$t+rnorm(9999, 0, 1/sqrt(nrow(htwt))))
[image: CIs_files/figure-docx/unnamed-chunk-6-1.png]
  qqnorm(wt.median.boot$t+rnorm(9999, 0, 1/sqrt(nrow(htwt))))
[image: CIs_files/figure-docx/unnamed-chunk-6-2.png]
  quantile(wt.median.boot$t+rnorm(9999, 0, 1/sqrt(nrow(htwt))), c(0.005, 0.025, 0.05, 0.95, 0.975, 0.995))
    0.5%     2.5%       5%      95%    97.5%    99.5% 
105.5154 110.9115 112.1150 156.9491 158.1549 174.6958 
The confidence intervals computed above can be compared to those generated by boot.ci.
  boot.ci(wt.median.boot)
Warning in boot.ci(wt.median.boot): bootstrap variances needed for studentized
intervals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 9999 bootstrap replicates

CALL : 
boot.ci(boot.out = wt.median.boot)

Intervals : 
Level      Normal              Basic         
95%   ( 84.1, 146.7 )   ( 89.0, 136.0 )  

Level     Percentile            BCa          
95%   (111, 158 )   (110, 157 )  
Calculations and Intervals on Original Scale
With an apparent lack of normality, it would be a waste of time to use a normal approach to computing a confidence interval.
Difference of Means
We can use the boot package to look at more interesting statistics. Consider creating a confidence interval for the difference of the means of two samples. As an example, we can look at the difference of Group Weights using the data in the htwt data frame.
  wtgrp <- htwt[,c("Weight", "Group")]
  meanDiff <- function(x, i){
                             ### Compute group means
                             y <- tapply(x[i,1], x[i,2], mean)
                             ### Return the difference
                             y[1]-y[2]
                            }
   wtgrp.meanDiff.boot <- boot(wtgrp, meanDiff, R=9999)
   wtgrp.meanDiff.boot

ORDINARY NONPARAMETRIC BOOTSTRAP


Call:
boot(data = wtgrp, statistic = meanDiff, R = 9999)


Bootstrap Statistics :
    original    bias    std. error
t1*       28 0.3298177    19.04907
   plot(wtgrp.meanDiff.boot)
[image: CIs_files/figure-docx/unnamed-chunk-8-1.png]
   boot.ci(wtgrp.meanDiff.boot)
Warning in boot.ci(wtgrp.meanDiff.boot): bootstrap variances needed for
studentized intervals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 9999 bootstrap replicates

CALL : 
boot.ci(boot.out = wtgrp.meanDiff.boot)

Intervals : 
Level      Normal              Basic         
95%   (-9.67, 65.01 )   (-9.72, 65.38 )  

Level     Percentile            BCa          
95%   ( -9.38,  65.72 )   (-10.93,  64.14 )  
Calculations and Intervals on Original Scale
Normal and t Confidence Intervals
The bootstrap distribution of a statistic/estimator is supposed to resemble the sampling distribution of the same statistic/estimator. So, the distribution of the mean found above should be representative of what we would see if we sampled all possible samples of size  from the population.
We note that 95% of the sample means are within
  quantile(wt.mean.boot$t, c(0.025, 0.975))
  2.5%  97.5% 
121.95 158.40 
Assuming normality (which is supported by the plots generated above), the CLT suggests that the sample mean is distributed normally with mean,  and standard deviation  9.6423947. A plot of the normal (red/dot) and t (blue/dash) distributions for the weight data shows their differences.
  (n <- length(htwt$Weight))
[1] 20
  (mu <- mean(htwt$Weight))
[1] 139.6
  (se <- sqrt(var(htwt$Weight)/n))
[1] 9.642395
  xbar <- mu + seq(-5, 5, by=0.01)*se
  fz <- dnorm((xbar-mu)/se)
  ft <- dt((xbar-mu)/se, n-1)
  plot(xbar, fz, type="l", lty=3, col="red", ylim=range(c(fz, ft)))
  lines(xbar, ft, lty=2, col="blue")
  abline(v=qnorm(c(0.025,0.975), mu, se), lty=3, col="red")
  abline(v=mu + qt(c(0.025,0.975), n-1)*se, lty=2, col="blue")
  abline(h=0)
[image: CIs_files/figure-docx/unnamed-chunk-10-1.png]
Confidence intervals based upon the normal and t distributions also demonstrates the differences.
  qnorm(c(0.025, 0.975), mu, se)
[1] 120.7013 158.4987
  mu+qt(c(0.025, 0.975), n-1)*se
[1] 119.4182 159.7818
If we look at the bootstrap means, we see that
  (within196se <- table(wt.mean.boot$t >= qnorm(0.025, mu, se) & wt.mean.boot$t <= qnorm(0.975, mu, se))/length(wt.mean.boot$t)*100)

    FALSE      TRUE 
 4.250425 95.749575 
So, 95.75% of the means are within 1.96 standard errors of . We can turn this inside out and conclude that  is within 1.96 standard errors of 95.75% of the sample means. Hence, if we use  to create our intervals, 95% of the intervals will contain .
The plots below shows the proportion of means that fall within and outside of 95% and 99% CIs.
  seed <- 47
  nreps <- 100
  Sample <- 1:nreps
  xbar <- sample(wt.mean.boot$t, nreps)
  mu <- mean(wt.mean.boot$t)
  l95 <- xbar - 1.96 * se
  u95 <- xbar + 1.96 * se
  l99 <- xbar - 2.576 * se
  u99 <- xbar + 2.576 * se
  covers95 <- l95 <= mu & mu <= u95
  covers99 <- l99 <= mu & mu <= u99
  df <- data.frame(Sample, l99, l95, xbar, u95, u99)
  
  p <- ggplot(df, aes(x=xbar, y=Sample)) + geom_point() + geom_vline(xintercept = mu) + xlim(range(c(l99,u99)))
  p + geom_vline(xintercept = mu + c(-2.576, -1.96, 1.96, 2.576)*se, lty=2)
[image: CIs_files/figure-docx/unnamed-chunk-13-1.png]
  p + geom_segment(aes(x = l99, y = Sample, xend = u99, yend = Sample, color = covers99)) 
[image: CIs_files/figure-docx/unnamed-chunk-13-2.png]
  p + geom_segment(aes(x = l95, y = Sample, xend = u95, yend = Sample, color = covers95))
[image: CIs_files/figure-docx/unnamed-chunk-13-3.png]
To formalize this approach we note that above we used the bootstrap to generate percentile confidence intervals. We also used the bootstrap standard error to create normal confidence intervals for those bootstrap distributions that appeared to be normal.
It turns out that because of the CLT, when we know the population standard deviation, , we can still use the normal approximation for the mean and sum. In this case, the standard error of the mean is . When the population standard deviation is not known, we can approximate it by using . When we make this substitution, we also substitute a t-distribution (on  degrees of freedom) for the normal.
  n <- length(htwt$Weight)
  s.xbar <- sqrt(var(htwt$Weight)/n)
  s.xbar
[1] 9.642395
  s.boot <- sqrt(var(wt.mean.boot$t))
  s.boot
         [,1]
[1,] 9.400818
  mean(wt.mean.boot$t)
[1] 139.7484
  wt.mean.boot

ORDINARY NONPARAMETRIC BOOTSTRAP


Call:
boot(data = htwt$Weight, statistic = b.mean, R = 9999)


Bootstrap Statistics :
    original    bias    std. error
t1*    139.6 0.1483898    9.400818
  ### Use the bootstrap std error
  mean(htwt$Weight) + qnorm(c(0.005, 0.025, 0.05, 0.95, 0.975, 0.995))*s.boot
Warning in qnorm(c(0.005, 0.025, 0.05, 0.95, 0.975, 0.995)) * s.boot: Recycling array of length 1 in vector-array arithmetic is deprecated.
  Use c() or as.vector() instead.
[1] 115.3851 121.1747 124.1370 155.0630 158.0253 163.8149
  ### Pretend that the sample std dev is the pop std dev
  mean(htwt$Weight) + qnorm(c(0.005, 0.025, 0.05, 0.95, 0.975, 0.995))*s.xbar
[1] 114.7628 120.7013 123.7397 155.4603 158.4987 164.4372
  ### Compute the CI using the sample std dev
  mean(htwt$Weight) + qt(c(0.005, 0.025, 0.05, 0.95, 0.975, 0.995), n-1)*s.xbar
[1] 112.0137 119.4182 122.9270 156.2730 159.7818 167.1863
  boot.ci(wt.mean.boot)
Warning in boot.ci(wt.mean.boot): bootstrap variances needed for studentized
intervals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 9999 bootstrap replicates

CALL : 
boot.ci(boot.out = wt.mean.boot)

Intervals : 
Level      Normal              Basic         
95%   (121.0, 157.9 )   (120.8, 157.2 )  

Level     Percentile            BCa          
95%   (122.0, 158.4 )   (122.4, 159.3 )  
Calculations and Intervals on Original Scale
We see that the confidence intervals are slightly different. However, in this case, the differences are practically minimal — one or two pounds when looking at a mean of 139.6 pounds.
Theoretical CIs
The old-school, theoretical approach to creating confidence intervals is based upon the CDF and its inverse. In what follows, remember that the confidence level  is related to the hypothesis error type I error rate  by .
Proportion
For the proportion, we note that each of the outcomes can be coded as a “success” or “failure”. This leads us to the use of  iid  — or Bernoulli trials. The total number of “successes” is  and . Further,  and .
By the CLT, for  “large” (variously  and , or , etc.), . To obtain a  level CI for , we approximate the variance using  and look at

Thus, an equal tailed  confidence interval for  is .
Mean
For  iid  and  the CLT indicates that when  is “large”, . When  is known, and the  or  is large (), a  level CI for  can be computed as

Thus, a symmetric, two-tailed  confidence interval for  is .
Variance
Recall that for  iid , . With a bit of hand waving (note that  and  are ancillary, etc.), we see that . Thus

Thus, a two-tailed,  confidence interval for  is

Sample Size Estimation
Prior to collecting data one might be required to determine a sample size that will support a certain margin of error (me) at a certain confidence level. A guess for  can be made by noting that  where  is some measure of confidence based on an appropriate distribution and  is the standard error of the estimator.
Mean
The appropriate sample size for a confidence interval for  when  is known can be computed by recalling that . We need only solve for . Thus, we have

implies that we should choose  at least as large as

Proportion
For the proportion, , recall that

Again, solving for  we get

Unfortunately,  is unknown. Many statisticians plug in  as this maximizes . Others prefer to use  from a prior study or they run a pilot study.
rId20.png
100

150

Weight

200




rId23.png
1.00-

075~

Proportion

0.25-

0.00-

L3
o 23233

80

120

3
160
Weight

200




rId26.png
Density

0.02 0.04

0.00

Histogram of t

120 160

=

130 150 170
I I I

110

T T
4 2 0 2 4

Quantiles of Standard Normal




rId30.png
Density

004 008 012

0.00

Histogram of t

[ |
100 140 180

=

180

140

100

4 2 0 2 4

Quantiles of Standard Normal




rId33.png
gram of wt.median.boot$t + rnorm(9999, 0, 1/sqrt(nrc

o
8
3
&
z
2
s 8
sz 2
°
i
o
8
3
° =

100 120 140 160 180

wtmedian.bootSt + morm(9999, 0, 1/sart(nrow(htwt)))




rId36.png
Sample Quantiles

180

140

100

Normal Q-Q Plot

o

Theoretical Quantiles





rId40.png
Density

0.010 0.020

0.000

Histogram of t

-50

0

=

50 100

60 100
I L

20
I

T T
4 2 0 2 4

Quantiles of Standard Normal




rId45.png
0

€0

zo

Vo

00

120 140 160 180

100

xbar




rId48.png
100-

75-

sldwes

2-

100




rId51.png
Sample





rId54.png
Sample

100-

75-

50-

2-

covers95
— FALSE
— TRUE




