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Summary 

Polarization 

Now we want to move from considering just one dipole to a whole distribution of 

dipoles.  Just as it’s convenient talking about a charge density, and then summing 

over volume (rather than talking about individual charges and summing over them), 

it’s convenient to talk about a dipole density, a.k.a., the “polarization.”   

 



P  dipole moment per volume , 
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which may be induced by an external electric field or “frozen in.” 
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Bound Charges (Conceptually) 

Surface Charge.  Suppose and object has a uniform polarization (density of dipoles). 

This is equivalent to just having charges on the surfaces (see diagrams below).  
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Of course, the scalar potential due to charges distributed over a surface is 
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Volume Charge 

Suppose the polarization changes with position. This is equivalent to also having 

some charges in the volume of the object (see diagrams below). 
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Of course, the potential at some observation location due to charges distributed 

through a volume is 
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The net excess charges due to polarization are called bound charges, because they are 

part of neutral atoms or molecules that are bound in place. Any other charge is called 

free charge since they’re free to move about. 

So, generally, the potential due to a polarized object is (with b denoting “bound”) 
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Bound Charges (Mathematically) 

Now, that makes reasonable sense, but it remains to relate these charge densities to 

the dipole density – Polarization. So, now we’ll make that connection.  

In chapter 3 we’d derived the dipole term in the multipole expansion to be 
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Where I’m explicitly noting that we calculated the dipole relative to the origin.  Now, 

imagine doing that, and then choosing a new coordinate system in which the dipole is 

centered a location r’ from the origin.  That then gives us   
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This seems like a reasonable way to approximate the field of a molecule or some such 

other thing that is awfully small and has a dipole moment. 

  

For a chunk of such molecules (or whatever) the electric potential due to the whole 

collection is  
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Rephrasing this in terms of the dipole density, a.k.a., the polarization, 



P , the electric 

potential is  
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We suggested that having a divergence of dipole moments results in bound charge 

distributed throughout the volume, so following that hunch, we’d like to rephrase this 

expression in terms of a divergence; that means squeezing a del in there.  

The factor of 
2

ˆ
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

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
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r

1
 (the prime there to point out that we 

want to take the gradient with respect to the source locations, not the observation 

location.)  

 Note: We’ve previously seen and used that   
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which gives 
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Use a product rule to rewrite the integrand: 
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The electric potential can be written as the sum of two terms: 
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Apply the divergence theorem to the first integral to get 
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This has the form we’re looking for.  If we identify  
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 b  P  ˆ n and b  P  (4.11 & 4.12) 

and 
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ˆ n  is a unit vector normal to the surface (pointing outward). 
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Which is what we said made conceptual sense. 

If you want to find the electric field from the polarization 



P , there are two options: 

1. Use 



P  to find V using Equations 4.11-13, then use 



E  V . 
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2. Find the bound charges 



 b  and 



b  from 



P , then use Gauss’s law or 

Coulomb’s law to find 



E . 

 

 

Examples/Exercises: 

Problem 4.31 

A dielectric cube of side a, centered at the origin, carries a “frozen-in” polarization 



P  kr , where k is a constant. Find all of the bound charges and check that they add 

up to zero. 

The polarization can be written as 



P  kr  k x ˆ x  y ˆ y  z ˆ z   The volume bound 

charge is  
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which is uniform throughout the volume. On the top surface, 



ˆ n  ˆ z  and 



z  a 2, so 

the bound surface charge is 
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 b  P  ˆ n  k x ˆ x  y ˆ y  a 2  ˆ z   ˆ z  ka 2, 

which is uniform over the surface. By symmetry, it is the same on all six faces. The 

total bound charge is  
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Problem 4.14 

When you polarize a neutral dielectric, charges move a bit, but the total remains zero. 

This fact should be reflected in the bound charges 



 b  and 



b . Prove that the total 

bound charge vanishes. 

The total bound charge is found by integrating 



 b  over the surface and 



b  over the 

volume: 
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Use the definitions of the bound charges to write this in terms of the polarization as 
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da  da ˆ n . The second integral can be rewritten using the divergence 

theorem: 
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This is, in fact, central to Griffith’s derivation of the bound charge volume-density in 

section 4.2.2 

 

Exercise – have the students try this 

A dielectric cylinder of radius R and length L is centered on the z axis. One end of the 

cylinder is at z = 0. It carries a “frozen-in” polarization 



P  k 1 z L ˆ z , where k is a 

constant. Find all of the bound charges and check that they add up to zero. 

The volume bound charge is  
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which is uniform throughout the volume. On the curved surface, 



ˆ n  ˆ s , so the bound 

surface charge there is 

 



 b  P  ˆ n  k 1 z L  ˆ z   ˆ s  0 . 

On the end cap at 



z  0 , 



ˆ n ˆ z  so the bound surface charge there is 

 



 b  P  ˆ n  k ˆ z    ˆ z   k . 

On the end cap at 



z  L , 
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ˆ n  ˆ z  so the bound surface charge there is 

 



 b  P  ˆ n  2k ˆ z   ˆ z   2k . 

The total charge is 

 



Qb   k L R2L  k  R2  2k  R2  0. 

 

4.2.2  Physical Interpretation of Bound Charges 

Through section 4.2.2, Griffith’s goes to some length to convince us that, these 

identifications, 



 b  P  ˆ n and b  P  aren’t just conceptual tools for defining 

equivalent charge densities, but they are the actual charge densities in a polarized 

medium. 

For the surface charge density, he asks us to imagine a cylinder of aligned dipoles, 

then the whole cylinder’s dipole moment would be (where L is the length of the 

cylinder and A is the cross-sectional area) 
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So the charge on the face of the cylinder is equal to PA. 

Now, if the object is cut obliquely, rather than perpendicularly, what we want is still 

the cross-sectional area, cosendcross AA   



  7 

So,  
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As for the volume charge density.  Since we’re imagining a net neutral object, if we 

wrap it in a closed Gaussian surface, then whatever charge we catch inside the surface 

must be equal and opposite to the charge on the surface.  That is, 
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 (last step uses the Divergence Theorem / Gauss’s Law) 

This is clearly true over the full volume of the object, but, since dipoles are neutral 

charge pairs, if you move your Gaussian surface around, it must still be true – what 

extra charge there is inside must be countered by extra charge on the surface.  So this 

is true for all volumes, i.e. the integrands must be equal. 

 
bP 
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Preview 

For Monday, you’ll read about the electric displacement and Gauss’s law in materials.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  8 

 

"why is the field inside a surface uniform?" 
Davies        
 

 

"Can we do a problem where we find the electric filed of a non uniformly polarized volume?" 
Jessica        
 

 

"Why is (- del dot P) a volume charge potential? (pg. 174)" 
Casey P,  
 

 

"I had a little trouble understanding the difference between microscopic and macroscopic electric 
field." 
Connor W,  
 

 

"Can we talk conceptually about how the bound charges concept and how the surface/volume 
charge distributions are related to the dipole moments?" 
Sam        
 

  
 

"I had trouble following Example 4.2 and the different arguments he was making. Could we do 
this example (or one similar to it)?" 
Casey McGrath        
 

 

"Why is there a volume term and a surface term in equation 4.13 for the potential? Isn't the 
"surface charge" included in the volume integral?" 
Spencer        
 

 

"What does he mean by bound charges? On page 174, I don't really see how its so enlightening 
to say that the potential of charges in an area has to do with the surface and the volume inside, I 
would have thought that was a given." 
Freeman,  
 

 
 

 

http://www.google.com/moderator/#11/e=213d0d&u=CAIQzLuG5ZmKj_86
http://www.google.com/moderator/#11/e=213d0d&u=CAIQya2ftc3r_Jss
http://www.google.com/moderator/#11/e=213d0d&u=CAIQytbjmuXUx99L
http://www.google.com/moderator/#11/e=213d0d&u=CAIQu_Xj6PPJ09kb
http://www.google.com/moderator/#11/e=213d0d&u=CAIQ0IfK-KDW8NQn
http://www.google.com/moderator/#11/e=213d0d&u=CAIQqN-8oLLxja5K
http://www.google.com/moderator/#11/e=213d0d&u=CAIQrovlw6_X9812
http://www.google.com/moderator/#11/e=213d0d&u=CAIQ_Kz8wpPkxYyWAQ

