Integration

1. Simplify Using Algebra:
 a. Can I put it into power rule form by expanding or distributing terms?
 b. Can I factor the denominator to help cancel things out?

2. Numerator has a higher order polynomial than denominator:
 Use Polynomial Long Division to simplify

3. Denominator has a higher order polynomial than numerator:
 a. Use partial fractions to break up integral into multiple fractions
 b. If the denominator can't be factored complete the square

4. You have a function inside a function
 Try substitution: let \(w = \) the inside function

5. You have two functions multiplied
 Try integration by parts:
 - usually \(u = \) polynomial or \(\ln \)
 - \(dv = \sin x \cos x \, e^x \)
 - can use for powers of \(\sin \) and \(\cos \)
 or \(\sin xe^x \cos xe^x \) — make a copy
Integration Practice

Answers.

By Parts
\[\int x \sin(x) \, dx \]
\[= -x \cos(x) + \sin(x) + C \]

\[\int (t + 2)^{3/2} \, dt \]
\[= \frac{2}{9} \left(t + 2 \right)^{5/2} + C \]

By Parts
\[\int y \ln(y) \, dy \]
\[= \frac{1}{2} y^2 \ln|y| - \frac{1}{4} y^2 + C \]

Polynomial Division
\[\int \frac{x^2 + 7x^2 + 10x + 1}{x^2 + 7x + 10} \, dx \]
\[= \frac{1}{2} x^2 + \frac{1}{3} \ln|\frac{x+2}{x+5}| + C \]

Partial Fraction
\[\int \frac{x+1}{6x+x^2} \, dx \]
\[= \frac{1}{6} \ln|x| + \frac{5}{6} \ln|x+6| + C \]

Factor then u-sub
\[\int \frac{1}{x^2 + 4x + 4} \, dx \]
\[= \frac{1}{2} \ln|x+2| + C \]

u-sub
\[\int \frac{x}{1+x^2} \, dx \]
\[= -\frac{1}{2} \ln|1+x^2| + C \]

Simplification
\[\int \frac{x^3 \sin(x)}{x \sin(x)} \, dx \]
\[= \frac{1}{3} x^3 + C \]

u-sub
\[\int x^2(1+2x^3)^2 \, dx \]
\[= \frac{1}{6} \left[\frac{1}{3} (1+2x^3)^3 \right] + C \]

u-sub
\[\int e^x \cos(x) \, dx \]
\[= \frac{1}{2} e^x \left[\sin(x) + \cos(x) \right] + C \]

Hint: Integrate by parts twice to make a copy of the integral on the right hand side.

Completing the Square
\[\int \frac{1}{x^2 + 4x + 5} \, dx \]
\[= \arctan(x+2) + C \]