We use the readxl package to import data from the “Data_Complete_Temp_Ag (75%oc)” sheet in “4NP Standard Curve and Data.xlsx”. Data are in a similar format to the “Data_Complete_%OC” sheet, so we just rename a few things.
### Import the entire sheet
tempag <- read_excel("4NP Standard Curve and Data.xlsx",
sheet = "Data_Complete_Temp_Ag (75%oc)",
skip = 2)
## New names:
## * `Mass of dust per trial (g)` -> `Mass of dust per trial (g)...5`
## * `4NP in trial (mg)` -> `4NP in trial (mg)...6`
## * `Mass released (mg)` -> `Mass released (mg)...7`
## * `Mass of dust per trial (g)` -> `Mass of dust per trial (g)...9`
## * `4NP in trial (mg)` -> `4NP in trial (mg)...10`
## * ...
names(tempag)
## [1] "Days" "Mass dosed"
## [3] "Mass dust dosed(g)" "Conc on dust (mg/g)"
## [5] "Mass of dust per trial (g)...5" "4NP in trial (mg)...6"
## [7] "Mass released (mg)...7" "20C calm"
## [9] "Mass of dust per trial (g)...9" "4NP in trial (mg)...10"
## [11] "Mass released (mg)...11" "20 C agit"
## [13] "Mass of dust per trial (g)...13" "4NP in trial (mg)...14"
## [15] "Mass released (mg)...15" "4 C calm"
## [17] "Mass of dust per trial (g)...17" "4NP in trial (mg)...18"
## [19] "Mass released (mg)...19" "4 C agit"
### Subset columns 1:4 and 5:8 to get the 20 degree and calm data
tempag.20calm <- tempag[, c(1:4,5:8)]
names(tempag.20calm) <- c("Days", "Mass_Dosed", "Dust_Massed_Dosed", "Conc_On_Dust", "Mass_Of_Dust_Per_Trial", "FourNP_In_Trial", "Mass_Released", "Perc_Released")
tempag.20calm$Temp <- 20
tempag.20calm$Agitation <- "Calm"
### Subset columns 1:4 and 9:12 to get the 20 degree and agitated data
tempag.20ag <- tempag[, c(1:4,9:12)]
names(tempag.20ag) <- c("Days", "Mass_Dosed", "Dust_Massed_Dosed", "Conc_On_Dust", "Mass_Of_Dust_Per_Trial", "FourNP_In_Trial", "Mass_Released", "Perc_Released")
tempag.20ag$Temp <- 20
tempag.20ag$Agitation <- "Agitated"
### Subset columns 1:4 and 13:16 to get the 4 degree and calm data
tempag.4calm <- tempag[, c(1:4,13:16)]
names(tempag.4calm) <- c("Days", "Mass_Dosed", "Dust_Massed_Dosed", "Conc_On_Dust", "Mass_Of_Dust_Per_Trial", "FourNP_In_Trial", "Mass_Released", "Perc_Released")
tempag.4calm$Temp <- 4
tempag.4calm$Agitation <- "Calm"
### Subset columns 1:4 and 17:20 to get the 4 degree and agitated data
tempag.4ag <- tempag[, c(1:4,17:20)]
names(tempag.4ag) <- c("Days", "Mass_Dosed", "Dust_Massed_Dosed", "Conc_On_Dust", "Mass_Of_Dust_Per_Trial", "FourNP_In_Trial", "Mass_Released", "Perc_Released")
tempag.4ag$Temp <- 4
tempag.4ag$Agitation <- "Agitated"
### Stack the data to create a single data.frame
tempag <- rbind(tempag.20calm, tempag.20ag, tempag.4calm, tempag.4ag)
### "Study day" is coded as "Days.Trial"
tempag$Sample <- factor(round((tempag$Days - floor(tempag$Days))*10))
tempag$Days <- floor(tempag$Days)
### For percentage and proportion to numeric
tempag$Perc_Released <- as.numeric(tempag$Perc_Released)
## Warning: NAs introduced by coercion
tempag$Prop_Released <- tempag$Perc_Released / 100
tempag <- tempag %>% filter(!is.na(Days))
### Remove/delete the temporary individual percentage data.frames
rm(tempag.20calm, tempag.20ag, tempag.4calm, tempag.4ag)
### Write the complete, reformatted data.frame to CSV
write.csv(tempag, "Four_NP_Perc_Released_Temp_Ag.csv", row.names = FALSE)
### Check to make sure everything is balanced and plot it just for fun
head(tempag)
## # A tibble: 6 x 12
## Days Mass_Dosed Dust_Massed_Dos~ Conc_On_Dust Mass_Of_Dust_Pe~
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0 NA NA NA NA
## 2 5 18.0 5.5 3.27 1.25
## 3 5 15.6 5.6 2.79 1.22
## 4 5 22.3 7 3.19 1.31
## 5 10 18.0 5.5 3.27 1.2
## 6 10 15.6 5.6 2.79 1.5
## # ... with 7 more variables: FourNP_In_Trial <dbl>, Mass_Released <chr>,
## # Perc_Released <dbl>, Temp <dbl>, Agitation <chr>, Sample <fct>,
## # Prop_Released <dbl>
table(tempag$Days, tempag$Temp, tempag$Agitation)
## , , = Agitated
##
##
## 4 20
## 0 1 1
## 5 3 3
## 10 3 3
## 15 3 3
## 20 3 3
## 25 3 3
## 30 3 3
## 35 3 3
## 40 3 3
##
## , , = Calm
##
##
## 4 20
## 0 1 1
## 5 3 3
## 10 3 3
## 15 3 3
## 20 3 3
## 25 3 3
## 30 3 3
## 35 3 3
## 40 3 3
ggplot(tempag, aes(x=Days, y=Perc_Released,
colour=factor(Agitation), shape=factor(Temp),
linetype=factor(Agitation))) +
geom_point() +
stat_summary(fun="mean", geom="line") +
#stat_summary(fun="mean", geom="point", shape = "-", size=10) +
theme_bw() +
labs(shape = "Temp", linetype = "Agitation", colour = "Agitation") +
ylab("Percent 4-NP Released")
head(tempag)
## # A tibble: 6 x 12
## Days Mass_Dosed Dust_Massed_Dos~ Conc_On_Dust Mass_Of_Dust_Pe~
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0 NA NA NA NA
## 2 5 18.0 5.5 3.27 1.25
## 3 5 15.6 5.6 2.79 1.22
## 4 5 22.3 7 3.19 1.31
## 5 10 18.0 5.5 3.27 1.2
## 6 10 15.6 5.6 2.79 1.5
## # ... with 7 more variables: FourNP_In_Trial <dbl>, Mass_Released <chr>,
## # Perc_Released <dbl>, Temp <dbl>, Agitation <chr>, Sample <fct>,
## # Prop_Released <dbl>
dim(tempag)
## [1] 100 12
We use the readxl package to import data from selected ranges of the “Data_Complete_Size” sheet in “4NP Standard Curve and Data.xlsx”.
### Import the 63 um data
size.63 <- read_excel("4NP Standard Curve and Data.xlsx",
sheet = "Data_Complete_Size",
range = "A4:H28",
col_names =c("Days", "Mass_Dosed", "Dust_Massed_Dosed", "Conc_On_Dust", "Mass_Of_Dust_Per_Trial", "FourNP_In_Trial", "Mass_Released", "Perc_Released"))
names(size.63)
## [1] "Days" "Mass_Dosed" "Dust_Massed_Dosed"
## [4] "Conc_On_Dust" "Mass_Of_Dust_Per_Trial" "FourNP_In_Trial"
## [7] "Mass_Released" "Perc_Released"
size.63$Size <- 63
### Import the 125 um data
size.125 <- read_excel("4NP Standard Curve and Data.xlsx",
sheet = "Data_Complete_Size",
range = "A33:H57",
col_names =c("Days", "Mass_Dosed", "Dust_Massed_Dosed", "Conc_On_Dust", "Mass_Of_Dust_Per_Trial", "FourNP_In_Trial", "Mass_Released", "Perc_Released"))
size.125$Size <- 125
### Import the 250 um data
size.250 <- read_excel("4NP Standard Curve and Data.xlsx",
sheet = "Data_Complete_Size",
range = "A61:H85",
col_names =c("Days", "Mass_Dosed", "Dust_Massed_Dosed", "Conc_On_Dust", "Mass_Of_Dust_Per_Trial", "FourNP_In_Trial", "Mass_Released", "Perc_Released"))
size.250$Size <- 250
### Import the 500 um data
size.500 <- read_excel("4NP Standard Curve and Data.xlsx",
sheet = "Data_Complete_Size",
range = "A89:H113",
col_names =c("Days", "Mass_Dosed", "Dust_Massed_Dosed", "Conc_On_Dust", "Mass_Of_Dust_Per_Trial", "FourNP_In_Trial", "Mass_Released", "Perc_Released"))
size.500$Size <- 500
### Stack the 63, 125, 250, and 500 um data to create a single data.frame
dustsize <- rbind(size.63, size.125, size.250, size.500)
dustsize$Sample <- factor(round((dustsize$Days - floor(dustsize$Days))*10))
dustsize$Days <- floor(dustsize$Days)
dustsize$Perc_Released <- as.numeric(dustsize$Perc_Released)
dustsize$Prop_Released <- dustsize$Perc_Released / 100
### Remove/delete the temporary individual percentage data.frames
rm(size.63, size.125, size.250, size.500)
### Write the complete, reformatted data.frame to CSV
write.csv(dustsize, "Four_NP_Size.csv", row.names = FALSE)
### Check to make sure everything is balanced and plot it just for fun
head(dustsize)
## # A tibble: 6 x 11
## Days Mass_Dosed Dust_Massed_Dos~ Conc_On_Dust Mass_Of_Dust_Pe~
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0 NA NA NA NA
## 2 5 18.0 5.5 3.27 1.1
## 3 5 15.6 5.6 2.79 0.8
## 4 5 22.3 7 3.19 1.2
## 5 10 18.0 5.5 3.27 1.2
## 6 10 15.6 5.6 2.79 0.9
## # ... with 6 more variables: FourNP_In_Trial <dbl>, Mass_Released <dbl>,
## # Perc_Released <dbl>, Size <dbl>, Sample <fct>, Prop_Released <dbl>
table(dustsize$Days, dustsize$Size)
##
## 63 125 250 500
## 0 1 1 1 1
## 5 3 3 3 3
## 10 3 3 3 3
## 15 3 3 3 3
## 20 3 3 3 3
## 25 3 3 3 3
## 30 3 3 3 3
## 35 3 3 3 3
## 40 3 3 3 3
ggplot(dustsize, aes(x=Days, y=Perc_Released, group=factor(Size),
colour=factor(Size), shape=factor(Size),
linetype=factor(Size))) +
geom_point() +
stat_summary(fun="mean", geom="line") +
#stat_summary(fun="mean", geom="point", shape = "-", size=10) +
theme_bw() +
labs(shape = "Size", linetype = "Size", colour = "Size") +
ylab("Percent 4-NP Released")
head(dustsize)
## # A tibble: 6 x 11
## Days Mass_Dosed Dust_Massed_Dos~ Conc_On_Dust Mass_Of_Dust_Pe~
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0 NA NA NA NA
## 2 5 18.0 5.5 3.27 1.1
## 3 5 15.6 5.6 2.79 0.8
## 4 5 22.3 7 3.19 1.2
## 5 10 18.0 5.5 3.27 1.2
## 6 10 15.6 5.6 2.79 0.9
## # ... with 6 more variables: FourNP_In_Trial <dbl>, Mass_Released <dbl>,
## # Perc_Released <dbl>, Size <dbl>, Sample <fct>, Prop_Released <dbl>
dim(dustsize)
## [1] 100 11