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Monday: Review for Test 3.  See on-line practice test 
“lecture-prep” is to bring in questions  
 
 

7.6 Bose-Einstein Condensation / Bosons with 0≠µ  
 
This is kind of tricky stuff.  Conceptually: it appeals to the heart of the difference 
between distinguishable and indistinguishable particles and what we mean by 
“temperature.”  Quantitatively:  The math doesn’t let us come up with a single, perfect 
model.  So, we’ll talk some about the concepts and then we’ll go about building some 
mathematical tools that do what we need.  If you feel like the mathematical model is kind 
of cobbled-together, you’re absolutely right.  It isn’t perfect; our goal is just to see that 
the qualitative behavior we expect is in there. 
 
7.6.1 Why Does it Happen  
Okay, what’s special about Bosons is that a) their indistinguishable and b) they can 
occupy the same single-particle state as each other.   
 
T = 0 

• So, obviously, if you take away all the energy you can, every particle will happily 
cohabitate in the single-particle ground state – they have completely degenerated, 
condensed into a single state. 

 
Low T 

• As you add energy / raise the temperature, some of the particles will rise to low-
lying energy states, but there will still be a large population in the ground state, a 
large population in the ‘condensate,’ for higher temperatures than one would 
classically expect.   

• In point of fact, there will always be some particles sharing the ground state; 
however, as T increases, it becomes an insignificant fraction of the population.   

• First, why does the ground-state population eventually become insignificant?   
o Think of the distribution of particles in terms of energy:  The average 

occupancy of a particular state depends on the energy/kT of that state: 

1
1
)( −

=
− βµεe

n .  That obviously tells us that a given high energy state is 

less populated than a given low energy state.  Meanwhile, the average 
number of particles with a given energy also depends on how many states 

have the same energy, i.e., the density of states: εεεεε dgdgn ow
2
1

)(/ == .  
This of course grows with energy – at higher energies, there are more 
states with the same energy.  So the product of these two determines how 
many particles have a given energy.  So, while the ground state will 
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always be the most popular single state, the most popular energy level will 

be where ever 
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ng o is peaked, so the ground state quickly 

becomes not so popular an energy level, and the condensate becomes 
insignificant.  

 
The peak should occur at 
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• That said, why does the ground-state remain significant for low-ish 

temperatures? 
o  Let’s think about the other two kinds of particles for comparison.  

§ Fermions  
• Okay, these can’t have multiply occupied states, so the 

lowest energy / zero-temperature configuration for a 
system of them is simply the first N single-particle 
states being full. 

§ Distinguishable Particles vs. Bosons 
• Like indistinguishable bosons, the lowest energy 

configuration of the system has all of the particles being 
in the lowest energy level – the difference is that each 
particle is distinguishable, so while they all have the 
same energy, they are in distinct states.   

• Another difference is that this situation more rapidly 
fades into obscurity as temperature rises.  Here’s why: 
their distinguishability means that there are a lot more 
unique states available when you add just a little 
energy: will particle Bob be excited, or will Alice, or 
will Carol, or will Doug,… the most popular energy 

level (where βµεεε )(2
1

)( −−= egng o  peaks) shifts up 
higher faster with increasing temperature it does for is 
Bosons. 

• To get deeper into this, we need to recall just what 
“temperature” means.  If you’re in the habit of directly 
associating temperature with average energy, this may 

be a little hard to swallow, but remember: 
U
S

T ∂
∂

≡1   So 

the temperature of a system depends not just on how 
much energy you put in it, but also how much disorder 
it induces (quantified in the entropy).   
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o Distinguishable system.  Imagine you have an 

N-particle system of distinguishable particles 
and another N-particle system of bosons.  If you 
add, say 2 units of energy to the distinguishable 
system, then there are 
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.  So, the temperature associated with adding 
one unit is roughly 
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§ Also note that of all these possibilities, N 
of them have N-1 particles remaining in 
the ground state;the remaining  
possibilities have only N-2 particles 
remaining in the ground state.  Put 
another way, the probability of having 
N-1 particles in the ground state is 
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o Boson System.  In contrast, if you add two units 

of energy to a Boson system, there are only two 
ways they can be distributed: all to one particle, 
or one to one, and one to another. 

2)2,( ==Ω qNBose .  So the temperature 
associated with adding one unit is roughly 

( )2ln
2
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q
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TBose =
∆
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= which is a significantly 

higher temperature!   
§ Also, even at this higher temperature, the 

probability of having N-1 particles 
(rather than N-2) in the ground state is ½ 
- far larger than for distinguishable 
particles. 

o Conclusion.  It takes a higher temperature to 
force the same amount of energy into a Bose 
system, and even then, there’s a greater 
population in the ground state.   

• Density of states effect.  Something that isn’t 
addressed in this simple illustration is a higher energy 
level generally has a greater degeneracy, but this effects 
distinguishable particles and bosons equally.  

• Pulling back a bit and summarizing: There’s the 
competition between the probability of being in a 
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particular state (higher probability for lower energy 
states) and the number of states with a particular 
energy.  The higher the energy, the less probable a 
particular state, but the more individual states available.  
For Distinguishable particle, not only are there more 
states available for individual particles at higher 
energies, but there are even more ways of choosing 
which particles will be in which of the occupied states.  
For distinguishable particles then, it is preferable to 
have E energy accounted for by having N particles in 
different, medium energy states.  For Bosons on the 
other hand, you’re a little more likely to have E energy 
accounted for by having fewer excited particles in 
higher energy states – leaving more particle back in the 
ground state.   

 
Okay, let’s get quantitative 
 

• 3 Regimes: T = 0, T very low/moderate, T high (classical) 
• We’re interested in what fraction of the particles in our system are in the ground 

state.  In the Condensation regime, it’s startlingly large.   
• Ground State 

o The average occupancy of the ground state is ( ) 1
1

−
=

− βµεoe
no .  Since 

there is only one ground state (degeneracy of 1), the number of particles 

with this lowest energy is simply ( ) 1
1

−
==

− βµεoe
nN oo . 

§ (Prep for Pr. 66) Question:  For that matter, what would be the 

average occupancy of one of the 1st excited states? ( ) 1
1

11 −
=

− βµεe
n  

For a spin=0 particle, how many 1st excited states are there? – look 
in p(or n) space.  3.  So the number in the first energy level is 

( ) 1
3

3
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nN  

 
o What’s µ during condensation, i.e. Low T?  

§ We see it in ( ) 1
1

−
==

− βµεoe
nN oo .   

§ At low T, we know that NNo →  where N is generally on order of 

1023. Looking at ( ) 1
1

−
=

− βµεoe
N o , No can get quite large only if 

the denominator gets quite small, i.e.,  ( )βµε −oe   approaches 1.  So, 
expanding ( )βµε −oe  around 1 gives ( ) ( )βµεβµε −+≈−

o
oe 1 .  

• Note: at first blush, you might think ‘what the heck are you 
doing with a Taylor series, β  is huge’, but for physical 

n 

No 

∞  

εo µ 
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reasons we know that the exponent must be tiny for No to be 
huge, so we can find what µ does that for us.  

§ 
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§ (Prep for Pr. 66)  So, 
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o
o N
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εµ  

o Now, as T drops and No grows, µ clearly approaches εo from below.  So it 
approaches the ground state energy from below.  So, what’s εo ? 
§ Energy 
§ For an order of magnitude calculation, imagine a simple cube of 

dimensions L.  The smallest momentum available is 
L

h
p x 2

1= , 

ditto for the y and z components of momentum.  So the smallest 

energy available is 
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really small!  A corresponding temperature would be 10-18K! 
o Note: for a spin = 0 particle, there is only one ground state. 

§ (Prep for Pr. 66) Question:  For that matter, what would be the 
energy of the 1st excited state? 
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o Since εo is quite small, 




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o
o N

kT
εµ  means that µ is negative for 

elevated temperatures // when No is small.  Only when temperature drops 
and the population of the ground state grows appreciably will µ approach 
the very small positive value of εo.   

• Condensation T, No dependence on T.   
o So, around what temperature do the particles begin ‘condensing’ into the 

lowest energy state? 
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Prep. For HW 74:  You’ll use Excel to do this sum for the first ~ 200 terms. Note that 
the degeneracy, ε/wn and energy structure are both given in the previous problem.  
 

§ Here, I’ve explicitly separated off the term for the ground state 
population from all the other terms for the excited states. 
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§ This last step of course is in preparation for replacing the sum with 

an integral, but we can only get away with that if 1<<∆εβ , or in 
other words kT<<∆ε .  The energy steps between states are on 
order of oε  which is pretty darned small, so we can get away with 
this for most temperatures. 
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§ Look at the competition in the integrand.  ε  vs. ( ) 1
1

−− βµεe
.  

While the low energy states are by far the most popular (according 
to the second factor particles really want to be in those states), they 
are also the fewest (according to the first factor there just aren’t 
that many of these low energy states), in the end, states with 
energy much less than kT don’t really contribute to the sum. 

§ That’s good because, it allows us to play a little loose with the 
lower end of the integration without significantly affecting the 
result.  The two approximations are that 1ε  and µ  are much 
smaller than the energy where the integrand becomes significant, 
i.e., 0,1 ≈µε .  
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•  The integral was ...612.2)()( 2
3

2
3 =Γ ζ  

• Limit of Approximation:  As we’ve already seen at very 
low temperatures, µ grows increasingly negative with 
increasing T. So the approximation 0≈µ  is only good for 
small and moderate temperatures.  At high temperatures we 
can’t neglect the chemical potential. 

• Threshold:  Clearly, the approximation breaks down by 
the time it predicts that the number of particles in excited 
states exceeds the total number of particles in the system.  
So we can define a threshold by 
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o Note: this is roughly when the volume per particle 
is the quantum volume – when wavefunctions must 
just overlap. 

o This can be rephrased in terms of the ground state 
energy: 2/322.0 NkT oc ε= , so it can be considerably 
more than the ground state energy (which itself is 
quite small and is about ∆ε between states). 

§ With this definition in hand, we can re-write the excited number of 
particles as  

§ N
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§ Roughly speaking, the population of excited states goes like: 
 
 
 
 
 
 
 
 
 
 
 
 
§ Determine µ from condensate population: 
§ For that matter, for these moderate temperatures, 
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§ Assuming that N is quite large,  

§ 
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§ This has the same low T behavior as we’d already predicted.  
Clearly, this gets ill-behaved as T approaches Tc. 

§ µ at T>Tc 
§ Above Tc,  The population of the ground state is negligible, so  
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∫  is the 

defining equation for µ.  One can use this to verify the basic form 
in Figure 7.33. 

§  
7.6.2 Real World Examples 
It’s readily observed in liquid 4He.  It takes some doing, but it’s also observed in 
Rubidium gas. 
 


