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It’s a Gas 
Last time we considered a few specific systems – dipole, Einstein solid, and rotating 
molecule.  Of course, our other favorite system is an ideal gas.  So now we’ll apply our 
new found tool to that. 
 
In point of fact, to completely specify a gas molecule’s micro-state, you’d need to specify 
every freedom it has: what kind of molecule it is, the nuclear state, the electronic state, 
the rotational state, the vibrational state, the translational state, and, oh yeah, its position, 
and other stuff too.  Each of these could have energy ramifications, and thus effect the 
probability.   
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But, remember the old mantra that probabilities of indedependent freedoms multiply.  So, 
we can separate out the different freedoms and speak just of the probability of being in a 
particular rotational state, translational state, or whatever.  
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So, when we were considering the statistics of rotational states last time, and completely 
ignoring any other freedoms, that was perfectly valid.  Similarly, we can now consider 
just the freedoms of translation and position independently.  In fact, we’ll start with 
position since it’s darn simple and we get a familiar result. 
 
The exponential Atmosphere, revisited 
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• In the Earth’s gravitational, E(z) = mgz, so ( )
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• Now, the relative densities of particles at two elevations should scale with their 
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• Does that look familiar? 
• So we quite simply find that the density of air decreases exponentially with 

elevation. 
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• Now we’ll move on to the velocity dependence. Okay, maybe not quite yet. First 
we’ll look at a fairly general result which happens to apply to the velocity 
dependence, as well as many others.  In fact, we’ve invoked this a few times in 
the past. 

•  
 
6.2 The Equipartition Theorem 

• What’s so special?  If you recall, for gasses in particular, except for specific 
ranges of temperature, the equipartition theorem holds.  It’s a powerful rule of 
thumb.  We’ve run into it over and over again for different specific systems.  
Using the Boltzmann statistics we can show were it’s generality comes form, and 
we can explain why it doesn’t apply for all temperatures. 

• Now that we have the Boltzmann factor, it’s quite easy to prove this is true for 
any quadratic energy term, that is, any term of the form 2)( cqqE = where c is a 
constant and q is a freedom such as x, px, Lx,…   

o Note, cq2 here is a stand-in for ½ mvx
2 or ½ L2/I or… they all have the 

same basic form. 
o Student Question:  The author says we’ll treat one degree of freedom as 

our ‘system’, what does he mean? 
§ Say you’ve got a particle that’s free to move in x, y, and z.  The 

freedoms to move in each direction are independent of the other 
directions.  So you can develop the statistics associated with each 
degree independently.  For example, you can say what the 
probability is that the particle’s moving with a certain vx regardless 
of what it’s doing in y and z.  So, the math looks just like it would 
if you had 3 1-D particles instead of 1 3-D particle.  In this way he 
suggests that each degree of freedom be treated as a ‘system’ for us 
to analyze. 

§  
• We’ll start by finding the partition function, and from there we’ll find the average 

energy. 
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o I’ve rewritten this in terms of qcx β=  because, as long as the step size 

in q is quite small in comparison to kT/c, we have 1<<∆=∆ qcx β , then 
it’s not much of a stretch of the imagination to let it become differentially 
small, i.e., turn the discrete sum into a continuous one.   
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o How to do this integral: Appendix B.1 
§ This is awfully cute 
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o Tada! 
o Don’t forget the approximation. This result followed from the condition 

that 1<<∆=∆ qcx β .  If this is not true, the discrete sum looks nothing 
like the continuous integral.  Rewriting this condition gives 

( ) kTEkTqc q <<∆→<<∆ 2 .  Only if the energy steps are quite small 
compared to kT is the partition theorem valid.  This makes sense because, 
even if the heat-bath would happily give a particle kT of energy, the 
particle can only accept discrete multiples of ∆E, no less and nothing in 
between.   

• Prep. For 6.31  You will do something similar, but for a linear degree of 
freedom. 

 
 
 
6.4 The Maxwell Speed Distribution 

• Prep for 6.41. You will repeat this following work for 2-D instead of a 3-D gas. 
• Translational kinetic energy is 2
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zyx mvmvmv ++ , each of these three 
represents a degree of freedom, and each depends quadratically, so leads to a ½ 
kT. For example, if we  make the substitutions cm →2

1 and qv x → , then we get 
exactly what we just proved ½ kT.  
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• But what does the whole distribution look like?  For that, we return to the 

expression ∑
−

=
s

E
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e

XX
s β

, where X = v, the speed.  We’ll build up the equation 

and thus see how a given speed weighs into the average.  ∑
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(absolute value sign since we’re interested in speed which is just a magnitude).  
Now we must sum over the states.  Considering each component of velocity as a 
separate degree of freedom, we can independently sum over states of x-motion, y-
motion, and z-motion. 
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• So we can switch from summing over states to summing over their corresponding 
velocity components.  We’d say that there’s 1 state of x-motion per ∆vx , one state 
of y-motion per…, so we have sum over these three independent states of motion 

individually:  zyxvvv
v v v
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• Just as in our equipartition argument, if the temperature is high enough, we can 
approximate these three sums with three integrals: 
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o Range:  The integrals would be over all values of the velocity components, 
but since I’m just interested in the speed, I can multiply by 8 and confine 
myself to considering just the positive octant.   

• Now, we have three, orthogonal variables, not unlike x, y, and z.  For that matter 
222
zyx vvvv ++= , quite similar to 222 zyxr ++= .  Borrowing a procedure 

from real space, we can transform from ‘Cartesian’ to ‘polar’ coordinates.   
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• Determining Pre-factor 
o Before going any further, we can pause and figure out exactly what 

Zvvv zyx ∆∆∆ is so we can get rid of these unsightly variables.  Looking 

back where we started from, ∑
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=
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|v| in there, we’d simply have Z/Z which of course is 1. 
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.  So tracing back through our work, that means if we 

remove one factor of v from our integrand, we’ll have Z/Z, i.e., 1. 
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§ Evaluating the integral:  back to Appendix B. 

+vx -vx 
∆vx 

Allowed vx values, i.e., there is one x-motion 
state per each value 

x-state#  1    2    3    4    5  … 
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• So, 
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• Results. 
o Average Speed.  Sure, we can evaluate this integral, with the help of a 

change of variables to vmq β2
1=  and appendix B, to find 

m
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v
π
8

= . 

o Probabilities.  We can also find the probabilities of each speed.  
Since ∑= )(vvPv  we can rewrite the integral in this form and read off 

what’s playing the roll of P(v). ∑
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rewritten the integral symbol as the sum symbol to make the two equations 

more parallel.  Clearly dvev
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that dv is an infinitesimally small constant, thus so is the probability of 
having any specific velocity  (since, classically speaking, there are infinite 
different velocities to choose from, the probability of any specific one is 
0).  But it’s really the relative probabilities of different speeds that we’re 
interested in, so we’ll just consider dv as a constant.     

o Most Probable Speed.  Then the most probable speed can be found by 
maximizing the probability function (taking its derivative and setting 
equal to 0.)  this yields ),/2,0(minmax/ ∞= mkTv .  Plugging these three 
values back in reveals that 0 and infinity are minima, where the 
probability goes to 0. 
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o Distribution. 

 
 
 
 
 
 
 
 
 
 
Prep for 6.36. You will find fill in some of the math to actually evaluate the average 
speed.  I recommend doing a change of variable or two to make the integral look like 

stuff* ∫
∞

−

0

dyye y which can be integrated by parts or like other.stuff* ∫
∞

−

0

dyye ay , in which 

case you can use the “increadibly handy” trick employed in appendix B.1 
 
6.5 Partition Functions and Free Energy 
 

• So far, we’ve applied the Boltzmann formalism directly to single-member, or 
micro-systems.  But even for these simple systems, we sometimes found that 
more than one micro-state had the same energy, so we got used to dealing with a 
degeneracy: ( )∑∑ −− Ω==
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•  Now here’s the shortcut to the book’s result.  Let’s apply the Boltzmann 
formalism not to a single-member, micro-system, but to a whole macro-system at 
energy U and temperature T.  Why not? 

o Then the partition function for the whole system must be 
( )∑∑ −− Ω==

E
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state

E eEeTUZ state ββ),( , but of course every micro-state of 

the macro-system has the same energy, U, since we decided to only look 
at such micro-states.  So there’s just one term in the sum over energy, 

( ) ),(ln),( )(/ TUZkTFeeeeeUTUZ FTSUUkSU −=⇒===Ω= −−−−− ββββ .   
• Recall, for a system at constant T, a process that reduces its F increases the 

universe’s entropy, thus is a favorable process.  Another way to put it, the 
macrostate with lowest F is the most probable. 

• Z is something like a (weighted) count of states.  We can see by this new 
relationship that reducing F increases Z, as would be expected. 

•  This F – Z relationship is useful because we can often figure out Z, and because 
we have partial derivatives of F for finding S, P, and µ. 
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vmax vave vrms v 

P(v)/dv 


