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Fri.3/16 |C 10.8.0-10.8.7, S. B.1 Gaussian, 6.3-.5 Equipartion, Maxwell |HW17 S.31,36,41B.1,2,3
Mon. 3/19 |S 6.5-7 Partition Function HW 18 S. 44, 48, 49, 52 HW15,16, 17
Wed. 3/21 |SA.5 Q.M. Background: Bose and Fermi HW19S. 21, 22
Fri.3/23 [S7.1-2 Q. Stats, Bos- and Fermions HW20S. 3, 8,9, 10, 11, 13ac, 18
It'sa Gas

Last time we considered a few specific systems — dipole, Einstein solid, and rotating
molecule. Of course, our other favorite system is an ideal gas. So now we' |l apply our
new found tool to that.

In point of fact, to completely specify a gas molecule' s micro-state, you'd need to specify
every freedom it has. what kind of molecule it is, the nuclear state, the electronic state,
the rotationa state, the vibrational state, the trandational state, and, oh yeah, its position,
and other stuff too. Each of these could have energy ramifications, and thus effect the
probability.
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But, remember the old mantra that probabilities of indedependent freedoms multiply. So,
we can separate out the different freedoms and speak just of the probability of being in a

particular rotational state, trandationa state, or whatever.
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So, when we were considering the statistics of rotational states last time, and completely
ignoring any other freedoms, that was perfectly valid. Similarly, we can now consider
just the freedoms of trangdlation and position independently. In fact, we'll start with
position since it's darn smple and we get a familiar result.
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The exponential Atmosphere, revisited
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In the Earth’s gravitationd, E(z) = mgz, so P(s,) =2 —

Now, the relative densities of particles at two elevations should scale with their
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Does that ook familiar?
So we quite simply find that the density of air decreases exponentially with
elevation.
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probabilities, so
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Now we'll move on to the velocity dependence. Okay, maybe not quite yet. First
we'll ook at afairly genera result which happens to apply to the velocity
dependence, as well as many others. In fact, we' ve invoked this afew timesin
the past.

6.2 The Equipartition Theorem
What’s so special? If you recall, for gasses in particular, except for specific
ranges of temperature, the equipartition theorem holds. I1t's a powerful rule of
thumb. We' veruninto it over and over again for different specific systems.
Using the Boltzmann statistics we can show were it's generality comes form, and
we can explain why it doesn’'t apply for all temperatures.
Now that we have the Boltzmann factor, it’'s quite easy to prove thisis true for

any quadratic energy term, that is, any term of the form E(q) =cg’wherecisa

constant and q is a freedom such as x, px, Lx,...
o Note, co? hereis astand-in for %2 mw? or %2 L%/ or... they al have the
same basic form.
0 Student Question: The author says we'll treat one degree of freedom as
our ‘system’, what does he mean?
= Say you've got a particle that's free to move in x, y, and z. The
freedoms to move in each direction are independent of the other
directions. So you can develop the statistics associated with each
degree independently. For example, you can say what the
probability is that the particle’'s moving with a certain v regardliess
of what it'sdoing iny and z. So, the math looks just like it would
if you had 3 1-D particlesinstead of 1 3-D particle. Inthisway he
suggests that each degree of freedom be treated as a ‘ system’ for us
to analyze.
We'll start by finding the partition function, and from there we'll find the average
energy.
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0 I’verewritten thisintermsof x=./cbq because, aslong as the step size

in g isquite small in comparison to kT/c, we have Dx = @Dq <<1, then

it's not much of a stretch of the imagination to let it become differentially

smadll, i.e., turn the discrete sum into a continuous one.
X= ¥

1
Jbog, &
0o How todothisintegral: Appendix B.1
= Thisisawfully cute

0o Z» XdX
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o Don’t forget the approximation. This result followed from the condition

that Dx = ﬁ Dg <<1. If thisisnot true, the discrete sum looks nothing
like the continuous integral. Rewriting this condition gives
c(Dg)® <<kT® DE, << KT. Only if the energy steps are quite small

compared to kT is the partition theorem valid. This makes sense because,
even if the heat-bath would happily give a particle KT of energy, the
particle canonly accept discrete multiples of DE, no less and nothing in
between.

Prep. For 6.31 You will do something similar, but for alinear degree of
freedom.

6.4 The Maxwell Speed Distribution
Prep for 6.41. You will repeat thlsfollowmg work for 2-D instead of a 3-D gas.

Translational kinetic energy is £ mv; +<mv; +<mv;, each of these three
represents a degree of freedom, and each depends quadratically, so leadsto a2
KT. For example, if we make the substitutions: m® cand v, ® ¢, then we get
exactly what we just proved %2 kT.

(K.E)= <% mv2> = <%mvf>+<%mv§>+<%mvzz> =1KT+1KT+1KT =2KT

o\ |3KT
(V) “\m
But what does the whole distribution look like? For that, we return to the
-Eb

[

expression X =g X,

, Where X = v, the speed. We€ Il build up the equation

- Lmb
and thus see how a given speed weighs into the average. V=g M >
(absolute value sign since we're interested in speed which is just a magnitude).
Now we must sum over the states. Considering each component of velocity asa
separate degree of freedom, we can independently sum over states of x-motion, y-
motion, and z motion.
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So we can switch from summing over states to summing over their corresponding
velocity components. We' d say that there’s 1 state of x- motion per Dvy , one State
of y-motion per..., so we have sum over these three independent states of motion
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Just as in our equipartition argument, if the temperature is high enough, we can
approximate these three sums with three integrals:
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0 Range: Theintegrals would be over al values of the velocity components,
but since I'm just interested in the speed, | can multiply by 8 and confine
myself to considering just the positive octant.

Now, we have three, orthogonal variables, not unlike x, y, and z. For that matter

V=,V +VvZ+V?, quitesimilar to r =4/x*+y? +2z* . Borrowing a procedure

from real space, we can transform from ‘ Cartesian’ to ‘polar’ coordinates.
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Determining Pre-factor
o Before going any further, we can pause and figure out exactly what
Dv,Dv,Dv,Z is so we can get rid of these unsightly variables. Looking

e—%mvzb

> if wejust didn’t have that

[v] in there, we'd ssimply have Z/Z which of courseis 1.
_irnvzb
3 £ > = ; =1. So tracing back through our work, that meansif we

remove one factor of v from our integrand, we'll have Z/Z, i.e., 1.

back where we started from, V=3 M

—_ Lstate 4p ¥‘ 2 '_;mvzb
1= 55, Qe dv

v=0

= Evauating the integral: back to Appendix B.
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Results.

0 Average Speed. Sure, we can evaluate this integral, with the help of a

: , - f8T
change of variablesto g =./2mbv and appendix B, to find V = p_m

Probabilities. We can aso find the probabilities of each speed.
Sincev = é vP(v) we can rewrite the integral in this form and read off

. & ,.3/2 L.
what’s playing the roll of P(v). V=Q v>&dp gen_bg vZe ™™ Pdvy, I've

8 € o g
rewritten the integral symbol as the sum symbol to make the two equations
,3/2

more parale. Clearly P(v) = @8&%9 vZe ™ dv. Itisworth noting
edP g
that dv is an infinitessmally small constant, thus so is the probability of
having any specific velocity (since, classically speaking, there are infinite
different velocities to choose from, the probability of any specific oneis
0). Butit'sredly the relative probabilities of different speeds that we're
interested in, so we'll just consider dv as a constant.
Most Probable Speed. Then the most probable speed can be found by
maximizing the probability function (taking its derivative and setting
equal to 0.) thisyields v, ., = (0,v2kT/m,¥). Plugging these three
values back in reveals that 0 and infinity are minima, where the
probability goesto O.
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o Distribution.
P(v)/dy

Vma/aveVrms \

Prep for 6.36. You will find fill in some of the math to actually evaluate the average
speed. | recommend doing a change of variable or two to make the integral look like

¥

stuff* e’ dy which can be integrated by parts or like other.stuff* cyye ®dy, in which
0 0

case you can use the “increadibly handy” trick employed in appendix B.1

6.5

Partition Functions and Free Energy

So far, we've applied the Boltzmann formalism directly to single-member, or
micro-systems. But even for these simple systems, we sometimes found that
more than one micro-state had the same energy, so we got used to dealing with a

degeneracy: Z = § e =" = § W(E)e ™ . Of course, W(E) =e*®'* o

state E
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Now here' s the shortcut to the book’sresult. Let’s apply the Boltzmann
formalism not to a single-member, micro-system, but to a whole macro-system at
energy U and temperature T. Why not?

0 Then the partition function for the whole system must be
ZU,T)=q e 5= =3 WE)e ™ , but of course every micro-state of
state E
the macro-system has the same energy, U, since we decided to only look
at such micro-states. So there' s just one term in the sum over energy,
ZU,T)=WU)e"™® =eS*e® =g ™ =g ™ p F=-kTIhZU,T).
Recall, for a system at constant T, a process that reduces its F increases the
universe' s entropy, thus is afavorable process. Another way to put it, the
macrostate with lowest F is the most probable.
Z is omething like a (weighted) count of states. We can see by this new
relationship that reducing F increases Z, as would be expected.
ThisF — Z relationship is useful because we can often figure out Z, and because

we have partial derivatives of F for finding S, P, and m
o s=-@F0 po@Fo [ afFs
ellT [%VAN eV @7 N efN a7



