$$
\begin{array}{llc}
\Delta U=Q_{i n}+W_{o n} & S=k \ln \Omega \quad d S=\frac{1}{T} d U+\frac{P}{T} d V-\frac{\mu}{T} d N & d S \geq \frac{Q}{T} \\
\frac{1}{T} \equiv\left(\frac{\partial S}{\partial U}\right)_{N, V} & P=T\left(\frac{\partial S}{\partial V}\right)_{U, N} & \mu=-T\left(\frac{\partial S}{\partial N}\right)_{U, V} \\
e \equiv \frac{\text { Benefit }}{\text { Cost }} \quad C O P \equiv \frac{\text { Benefit }}{\text { Cost }} \quad \gamma=\frac{f+2}{f} & \\
H \equiv U+P V & G \equiv U-T S+P V=N \mu \\
d H=T d S+V d P+\mu d N & d F=S d T-P d V+\mu d N & d G=-S d T+V d P+\mu d N \\
p H \equiv-\log _{10} m_{H^{+}} & \Delta F_{T} \leq W & \Delta G_{T, P} \leq W_{\text {other }} \\
&
\end{array}
$$

True under certain conditions

$\Delta U=\frac{f}{2} N k \Delta T$ where $f=\#$ of accessible degrees of freedom.

$$
\begin{aligned}
& P V=N k T \quad \quad P_{i} V_{i}^{\gamma}=P_{f} V_{f}^{\gamma} \quad W_{s \rightarrow}=N k T \ln \left(\frac{V_{f}}{V_{i}}\right) \\
& \frac{d P}{d T}=\frac{S_{2}-S_{1}}{V_{2}-V_{1}}=\frac{L / T}{\Delta V} \\
& P=\frac{N k T}{V-N b}-\frac{a N^{2}}{V^{2}} \quad G=-N k T \ln (V-N b)+\frac{N^{2} k T b}{V-N b}-\frac{2 a N^{2}}{V}+c(T) \\
& G=\mu_{\text {solvent }}(T, P) N_{\text {solvent }}+N_{\text {solute }} f(P, T)+N_{\text {solute }} k T \ln \left[N_{\text {solutut }} N_{N_{\text {solvent }}}\right]-N_{\text {solute }} k T
\end{aligned}
$$

For reaction $v_{1} X_{1}+v_{2} X_{2}+\ldots \leftrightarrow \alpha_{1} Y_{1}+\alpha_{2} Y_{2}+\ldots$,

$$
\mathrm{k}=1.3 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

$$
K \equiv e^{-\Delta G^{o} / R T}=\left(\frac{\left(\frac{P_{Y_{1}}}{P_{o}}\right)^{\alpha_{1}}\left(\frac{P_{Y_{2}}}{P_{o}}\right)^{\alpha_{2}} \cdots}{\left(\frac{P_{X_{1}}}{P_{o}}\right)^{v_{1}}\left(\frac{P_{X_{2}}}{P_{o}}\right)^{v_{2}} \cdots}\right), \quad \frac{\left(m_{Y_{1}}\right)^{\alpha_{1}}\left(m_{Y_{2}}\right)^{\alpha_{2}} \cdots}{\left(m_{X_{1}}\right)^{v_{1}}\left(m_{X_{2}}\right)^{v_{2}} \cdots}=e^{-\Delta G^{o} / R T}=K
$$

20 pts 1. Quickies

5 pts a. Qualitatively, what's the origin of the $b N$ term in the Van Der Waals equation? How about the $a N 2 / V 2$ term?

5 pts
b. Complete the sentence: In a real steam engine, using the Rankine cycle, liquid water is pumped to high pressure, passed through the boiler where it turns to steam, then it adiabatically drives a turbine, and finally condenses to water again. Complete the sentence: When driving the turbine, the steam's entropy
\qquad _.
$5 \mathrm{pts} \quad$ c. Complete the sentence: Under just constant temperature conditions, maximizing universal entropy is equivalent to minimizing
\qquad —.

5 pts d. In terms of cold and hot reservoir temperatures, what's the greatest efficiency a heat engine can have?

26 pts 2. Refrigerator. A refrigerator's cycle is essentially the reverse of a heat-engine's. The cold reservoir (the inside of the fridge T_{c}) is cooled by heating the coolant Q_{c}, and the hot reservoir (the kitchen at T_{h}) is heated by cooling the coolant Q_{h}. Of course, work, W, must be done on the coolant to make the fridge operate.

4 pts a. Determine the Coefficient of Performance in terms of heat and work.
20 pts b. Use some laws of thermodynamics to set a limit on the CoP strictly in terms of the reservoir temperatures, T_{h} and T_{c}.

2 pt c. Say the kitchen is a nice $72^{\circ} \mathrm{F}=22.22^{\circ} \mathrm{C}=295.4 \mathrm{~K}$, and the fridge is kept at $36^{\circ} \mathrm{F}=2.22^{\circ} \mathrm{C}=275.37 \mathrm{~K}$; what's the limit on the CoP?
3. Hill. The 'Hill' cycle is illustrated below. Approximating that it is performed by an ideal gas in a closed chamber (so N doesn't change), derive its efficiency in terms of the three volumes labeled and γ. We'll break this into steps.

2 pt a. For which stroke is $\mathrm{Q}=0$?
6 pts b. What's the efficiency in terms of the remaining two Q's?
9 pts c. What are these Q's in terms of P's, V's, γ, and f (you may initially have NkT's, but we're imagining we have an ideal gas)?

13 pts
d. Ok, I don't want to take all the fun out of it, finish things up on your own.
4. Phases. Calcite and aragonite are two phases of CaCO_{3}. Here are the stats on them, per mole, at 298 K and $1 \operatorname{bar}\left(1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$.

	Calcite	Aragonite
$\mathrm{S}(\mathrm{J} / \mathrm{K})$	92.9	88.7
$\Delta \mathrm{G}(\mathrm{kJ})$	-1128.8	-1127.8
$\Delta \mathrm{H}(\mathrm{kJ})$	-1207.1	-1206.9
$\mathrm{~V}\left(\mathrm{~cm}^{3}\right)$	36.93	34.15

10 pts a. Qualitatively Plot G vs. P for the two phases in the vicinity of 1 bar. Indicate values for the slopes and separations of the curves at 1 bar.

8 pts b. Assuming that the values given above hold over a wide enough range of pressure, at what pressure would the two phases be in equilibrium?

4 pts
c. At that equilibrium point, what would be the slope of the equilibrium curve in a P-T plot?

4 pts
5. van der Waals. What's the chemical potential for a van der Waals gas?
6. Chemical Reactions. In a lead-acid battery, the net chemical reaction is $\mathrm{Pb}+\mathrm{PbO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{SO}_{4}^{2-} \rightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
a. Using only the values in the table at the back of the book, what is the energy made available when one mole of $P b$ is processed at room temperature and atmospheric pressure?
b. This reaction relies on the fact that, in an aqueous solution, $2 \mathrm{SO}_{4} \mathrm{H}_{2}$ dissociates into $2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$.
i. What's the equilibrium constant, K , for this process at this room temperature?
ii. What is the relationship between the molalities of the two products?
iii. If the molality of $2 \mathrm{SO}_{4} \mathrm{H}_{2}$ is 10^{-5}, what are the molalities of the two products?
7. Phases and Domains. Looking at the T vs. "Weight percent lead" plot in figure 5.34, describe what happens, for a mixture of around .75 , as you slowly lower the temperature from above $300^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.

