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Daily: Kyle Jacob Spencer Gigja Anton Jessica Sean Antwain Jonathan Casey Jeremy Mark   Connor     Brad 
 

Equipment 

 Griffith’s text 

 

Check dailies 

 

Announcements 

 

Daily 13.M Monday 11/24 Griffiths 6.4-.5 Hyper-Fine Structure of Hydrogen & Zeeman Effect 

6. Time-Independent Perturbation Theory 
 

6.4 The Zeeman Effect 
 

Could we go over the Zeeman Effect a little more in depth?" Jeremy,  
 

The standard treatment of the Spin-Orbit coupling effect gets us thinking about the effect of a 

magnetic field on the electron’s energy.  While that involved an argument made in the electron’s 

reference frame, in the “lab frame”, we can of course subject it to a magnetic field.   

 

As you were reminded in the S-O section, a current loop constitutes a magnetic dipole, and the 

energy associated with a magnetic dipole’s alignment with an external magnetic field is 

 

 extBE


   

 

In the lab frame, we see the electron orbiting and ‘spinning’, so just as we can treat the two 

angular momenta for these individually and add for the total, we can treat the two magnetic 

dipole moments separately and add for the total. 

 

spinorbite 


  

Now, the electron really can be thought of as orbiting, so we make no error in relating the 

associated orbital angular momentum with the orbital magnetic moment:  

  

 For circular motion it’s quite easy:  
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13 
Mon., 11/24 

Tues. 11/25 

6.4-.5 Zeeman  & Hyper-fine  

 

Daily 13.M 

Weekly 13 

Thanksgiving Break Wed 11/26-Fri 11/28 

14 

Mon., 12/1 

Tues. 12/2 

Wed., 12/3 

Fri., 12/5 

12.1-.2 EPR Paradox and Bell’s Theorem; Scholosauer  (Elegance & Enigma)– 8 Bell’s 

 

12.3-.5 Cats, Clones, and Zeno;  Scholosauer  (Elegance & Enigma)– 7 Measurement 

Scholosauer  (Elegance & Enigma)– Ch.3 – Interpretations, Ch. 12 Switching 

Daily 14.M 

Weekly 14 

Daily 14.W 

Daily 14.F 

http://www.google.com/moderator/#11/e=213ead&u=CAIQ3Pb8yM2Lz-c1
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So, the quantum-mechanical operator that lets us extract the orbital magnetic moment from a 

wavefunction is 

  L
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For the spin, if we were to model the spinning electron as simply a smaller current loop, we’d get 

the same relation between S and spin.  That would get all the physical parameters correct, but we 

need to make one correction: with a half-integer spin, the electron needs to go around twice to 

return to its original state.  So maybe it’s not too surprising that we’d be off by a factor of 2. 

  S
m
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So the corresponding operator is 
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Then the term this effect adds to the Hamiltonian is 

 

    extextspinorbitexte

Z BSL
m

e
BBH


 ˆ2ˆ

2
ˆˆˆˆ   

 

In case you’re keeping track, we’ve added in three ‘perturbations’ to the simple Hamiltonian: 

some relativistic tweaks to the kinetic energy and coulombic potential energy and now the 

interaction with an external magnetic field.  That brings the Hamiltonian up to 
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 So, we want an approximate expression for the energies that the Hydrogen atom can have.   

 

If one of the ‘perturbations’ is much smaller than the other, then we can think of it as merely a 

perturbation to the larger perturbation.  In broad strokes, the game is to start with the exact 

solutions to the simple Hamiltonian,  oĤ , figure out a linear combination of them that is ‘good’ 

for the largest perturbation (that have expectation values that do not change over time due to the 

perturbation / are good approximations for eigen states of the perturbed Hamiltonian), and then 

approximate that the smaller perturbation will leave the system in those states, but affect their 

energies.  That is 

  smallerbiggero HHHH  ˆ ˆ   ˆ  ˆ  

 bigforgood

smallerbigger

bigforgood

o HHEE ....
ˆ ˆ        

 

For example, if we started with a particle in an infinite square well,  
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E15 = 0.0547141893504 

 

and we added in two perturbations: raising the floor on the left side and tipping the whole floor.   

 

Here are the effects individually: (I’ve made them pretty large for mere “perturbations” just so 

we can see their affects): 

 
E15slope = E15 + E’15slope     E15step = E15 + E’15step   

    E’15slope = 0.05379       E’15step  = 0.04027 

(0.10850603833)      (0.0949869666563) 

Now, the slope were the dominant perturbation, we’d get wavefunctions and energies that were 

just minor tweaks off of those; if the step where the dominant perturbation, we’d get 

wavefunctions and energies that were just minor tweaks off of those: 
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E = E15 + E’15slope + 0.067*E’15step  E = E15 + E’15step + 0.078*E’15step 

(0.111192092033)    (0.0991631736795) 

here v(j) = 0.1*vstep(j) + vslope(j)   v(j) = vstep(j) + 0.1*vslope(j) 

 

 

However, if the two effects are of equal strength, then there’s no approximating one as a minor 

tweak on top of the other: 

 
E = E15 + 0.93* (E’15slope + E’15step ) 

(0.1417546232) 

 

Similarly, if the two relativistic correction and the Zeeman effect are of equal strength, we’ll 

have to treat them on equal footing. 

6.4.2 Strong-Field Zeeman Effect 
 

I’m going to look at the strong and weak field cases in the opposite order from what Griffiths 

does since the Strong-Field case is simpler. 

 

I dont really understand how to come up with all the different states. (that might be 

something I've forgotten) Casey P 

 

http://www.google.com/moderator/#11/e=213ead&u=CAIQytbjmuXUx99L
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"Still confused about how to decide which quantum numbers are the "good" ones." 

Spencer     

I am confused about this too.Jessica 

I would like clarification on this too. Gigja 
 

Now, if the Zeeman Effect is the stronger of the two, then we want to use ‘good’ eigenvectors 

according to it, essentially allowing that J needn’t be conserved since the system isn’t isolated. 

Instead, the states for whom L and S are of fixed alignment with the field / the z-axis are the 

‘good states’ whose energies evolve smoothly as we turn on the magnetic field: sl msmln ,,,,  

are the states we’d use.  That’s fine, those are essentially the states we’d come up with for the 

Hydrogen atom in the first place, it was through the Clebsch-Gordan table that we were able to 

construct states with set j values (treating l and s as independent angular momentum freedoms). 

 

So  
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That said, we should really go back and rethink the spin-orbit correction in terms of this basis 

set. 

"Can we go over how griffith's gets 6.81" Jessica     
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For the denominator, the same argument applies as did before,  
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But now, the x and y components off the spin and orbital angular momentum are not defined; 

indeed, there’s no reason for the system to prefer one orientation or another, and we have two 

independent a cones of possible S and L values, visualized by 
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http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
http://www.google.com/moderator/#11/e=213ead&u=CAIQ0Ij0vsWeq4BE
http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
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So we don’t really have to do the integrals to find the expectation values for the x and y 

components of the angular momenta, they’re going to average out to  
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So, in the strong-field limit,  
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For that matter, if you write out a in terms of fundamental constants and the fine-structure 

constant in terms of fundamental constants, you’ll see that  

mca
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1. Math:  6.22: starting with 6.80 use 6.57, 6.61, 6.64, and 6.81 to arrive at 6.82. 

So the full Fine-Splitting energy in this case is  
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Which requires only a little more combining and regrouping of constants to get Griffiths’ 

expression 
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6.4.1 Weak-Field Zeeman Effect 
Now, if the external magnetic field is quite weak, our system is nearly isolated, so the total 

angular momentum (both magnitude, quantized by j and direction, quantized by mj) must remain 

nearly constant.  Furthermore, we’d found that S and L commuted with the spin-orbit energy 

term, so s and l (though not ms and ml) remain constant too.   
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So, the approximation we’ll make is that the wavefunctions that were good for the spin-orbit are 

also still pretty good when we have a weak enough external magnetic field.  That’s tantamount to 

approximating that the total angular momentum is still conserved (it isn’t perfectly, but we’re 

just after approximate energies after all.) 
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Defining the z direction to be that along which Bext points, just the z-components of the two 

operators survive the dot product (and using the more concise notation for the states) 
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Unfortunately, the wavefunctions we’re dealing with don’t have constant / well-defined Lz or Ls 

values.  That is to say, we’re approximating the system as isolated so the total angular 

momentum is conserved (both magnitude, j, and direction, mj).  We can take a step inte right 

direction by rewriting  
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It turns out that, while ms isn’t well defined / constant, we can still reason out what its 

expectation value will be, and that’s generally what the inner product gets us (not what it will be 

every moment you measure, but what it is on average). 

 

If the length and direction of J are set, and 

the lengths of L and S are set, and J = L + S, 

then we have a cone of possible S and L 

values, visualized by 

 

 

 

 

 

 

On average, whatever components S has that are perpendicular to J average out to 0, leaving only 

its projection in the J direction.  That is to say 
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To rephrase JS ˆˆ  , we can use   
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All of which have well-defined, constant expectation values. 
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Of course, s isn’t much of a variable, s = ½, so ½ ( ½ +1) = 
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There we have it, 
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Problem 6.21:   for the eight n =2 states, slmj j ,,,,2 , determine the Ez values and create a 

diagram like Figure 6.11 with slopes labeled. 

 

Let’s have a start at that.  What are the eight states?  Well, the freedoms are 

Since l< n we have l = 1 or 0 

 

And for l = 1, there’s the question of whether s is aligned with it or anti-aligned with it. 

j = “l + s” = 1 + ½ = 3/2  or   1 - ½ = ½ 

 

 

 

and then there’s the question of how much j is aligned with the magnetic field / z-axis. 

For j = 3/2, there are 4 choices: 

    mj = 3/2          ½                         -1/2            -3/2 
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6.4.3 Intermediate-Field Zeeman Effect 
 

Now we really to have to bite the bullet and deal with the fact that we have degenerate energies.  

We’ll want to work out all the elements of the W matrix as discussed in the section on 

degenerate states.  baab HW   .  Thanks to the Clebsch-Gordan table, we can express the 

wavefunctions either in terms of j and mj or in terms of l, ml, s, ms.  So, we have 
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Let’s see how one would build the W matrix Griffiths gives. 

"In finding H'z and H'fs is it appropriate to use eq6.76 and eq.6.82 or is there some other 

way?" Kyle B,  
Looking at just a couple of terms will give the idea of how it works.  
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We’ll want to express the two states in terms of Lz and Sz’s (ortho-normal) eigen vectors. 
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As for  
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It’s easiest to express the wavefunctions in terms of the j,mj basis set since then it’s easy to 

express the energies: 
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That’s the 3
2

8,7  ZW  that Griffiths has in the 7,8 (and the 8,7) location of the –W matrix. 

 

As for the energies, they’d be gotten from the ‘characteristic equation’; however, since the 

matrix is diagonal for the first four states, it’s easy to read the energies right off the diagonal. 

    223,33,33,3

)1(

3  fineZ WWWE  

 

For the next two, this could be broken down into the a sub matrix, and you can find it’s 

characteristic equation yields the two energy corrections. 

6.5 Hyperfine Splitting (of ground state) 
 

Even without our impose an external magnetic field or transforming to a co-orbiting frame, we 

should see that the electron is subject to a magnetic field due to the circulation of the charge 

within the nucleus which is, in this simple case, the proton (thus the two +2/3e and the one -1/3e 

charged quarks within it).  Its magnetic dipole moment can similarly be related to its spin, though 

there’s a bit of internal detail that we’ll sweep under the rug with a “gyromagnetic ratio” gp = 

5.59. 

 

p

p

p S
m

eg
ˆ

2
ˆ   

 

Without delving too deeply into Griffiths’ other text, we simply quote that the magnetic field due 

to a magnetic dipole is 

 

    r
c

rr
rc

B p

o

pp

o

p


3

232 3

2
ˆˆ3

4

1






   (where I’ve replace o with 1/(oc

2
)). 

So the shape of the field is the familiar loops about a current loop. 

 

So, the energy associated with the electron’s spin interacting with the proton’s spin is 
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     r
c

rr
rc

BE pe

o

peep

o

pe

pe  3

232

,

3

2
ˆˆ3

4

1






   

Now, it’s unclear to me how the electron’s orbit would interact with the proton’s spin, but it does 

seem that, for l not equal to 0, there would be a contribution.  In any event, Griffiths focuses on 

the ground state, so l = 0.  In that case,  

 S
m

e
e

ˆˆ
1


  

So, the term in the Hamiltonian would be 

      







 rSS

c
SSrSrS

rcmm

eg
H pe

o

peep

ope

ppe 3

232

2

,

1
ˆˆ

3

2ˆˆˆˆˆˆ3
4

1

2
ˆ 


 

So, 

      

   
 































1

3

121312

2

,)1(

1

1

3

2321

2

,)1(

1

1

,

11

,)1(

1

ˆˆ
3

2ˆˆˆˆˆˆ3

4

1

2

ˆˆ
3

2ˆˆˆˆˆˆ3
4

1

2

ˆ

rSS
cr

SSrSrS

cmm

eg
E

rSS
c

SSrSrS
rcmm

eg
E

HE

pe

o

peep

ope

ppe

pe

o

peep

ope

ppe

pepe











 

 

Now, since we’re focusing on the ground state, we can get explicit about these inner products. 

       

   

      

  0ˆˆ4ˆˆ4
1

sinˆˆˆˆ4
1

sinˆˆˆˆˆˆ3sinˆˆˆˆ3
1

sinˆˆˆˆˆˆ3
1

sinˆˆˆˆˆˆ3
ˆˆˆˆˆˆ3

0

/2

3

2

0 00

/2

3

2

0 0

2

0 00

/2

3

2

0 00

/2

3

2

2

0 0 0

33

/2

131




























 

  

 

  

  

 

 

 

pepe

ar

pepe

ar

peepep

ar

peep

ar

peep

ar
peep

SSSSdr
r

e

a
ddSSSSdr

r

e

a

ddSSrSrSddrSrSdr
r

e

a

ddSSrSrSdr
r

e

a

dddrSSrSrSr
ra

e

r

SSrSrS
















 

  

 

 

 

As for doing away with the 1/r term, while this does indeed blow up at r = 0, realy this integral 

should be done for r > 0; the delta function handles at r = 0. So the absolute 0 in the denominator 

would kill off this 1/r that approaches but never quite reaches 1/0. 

 

So, all we’re left with is the delta-function term.   

 

  1

3

12

2

,)1(

1
ˆˆ

3
 rSS

mmc

eg
E pe

peo

ppe 



 

Now, what is pe SS ˆˆ  ? 

We can do a similar trick as when confronted with the other dot products of spins: 

For the proton + electron system,   

Problem 6.27 
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 222

2
1222 ˆˆˆˆ2ˆˆ

peepepepe SSSSSSSSSSSSS 


 

         1

3222

12

2

,)1(

1 111
6

 rssssss
mmc

eg
E ppee

peo

ppe 
 


 

And since the electron and proton are both spin ½, that cleans up to  

  
  1

3

12

2

2
32

,)1(

1
6

1



 r

mmc

sseg
E

peo

ppe 



=

     
32

2

2
32

2

12

2

2
32

6

1
)0(

6

1

ammc

sseg

mmc

sseg

peo

p

peo

p



 



 

 

Now, this is a system of two spin-1/2 particles, so either the two spins aligned in one of the three 

triplet states, giving s = 1; or their anti-aligned giving s = 0. 

 















singlet  

et     tripl

singlet  

et     tripl

3 4
3

4
1

4
3

4
1

32

22

,)1(

1 E
ammc

eg
E

peo

ppe




 

Homework note: this is a more accurate expression than equation 6.92 in that this can readily be 

modified to handle other hydrogen-like atoms as in the homework.  For that, note a more 

accurate definition for a would be 















ep

o

mme
a

114
2

2
.  This uses the ‘reduced mass’ and 

comes from allowing that both the electron and the proton are free to move.  This becomes 

important when you start determining the energy splitting for exotic hydrogen-like “atoms.”  

 

 

 


