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Daily 12.M Monday 11/17 Griffiths 6.1 Time-independent Perturbations, non-degenerate 

 

These next few days, we’ll be looking at ways to get approximate solutions to problems that 

are too difficult to exactly solve. 

2. Time-Independent Perturbation Theory 
 

The idea of perturbation theory is that, if you change the Hamiltonian only a little bit, you’d 

expect the wavefunctions and their energies to change only a little bit too.  Now, we’re used to 

using a Taylor series to expand out a complicated function around some given point, and only 

using as many terms as we need for the level of accuracy desired.  So in the same way, we can 

imagine that the new wavefunctions and energies should be expressible in terms of a series of 

subsequently less significant corrections.  

2.1 Non-degenerate Perturbation Theory 

6.1.1 General Formulation 
 

Imagine you had a system, to be concrete, say a particle in a box, and initially the box floor was 

perfectly smooth.  So you have your simple Hamiltonian , 

 
oĤ , 

 

and your simple wavefunctions that go with it, 

 

 o

n , 

 

Which have their easily found energies, 
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 o

nE  

 

Then you go and mess it all up by pushing up a dent in the middle of the well’s floor. 

 

Now, the new Hamiltonian will be the old one plus a new term for the addition of the dent, 

 

 HHH o  ˆˆˆ  
 

1. Conceptual: What is the point of  in equation 6.8? 

 

 

Conceptually, these next few steps are easy to understand if you think of this dynamically; as 

you push up, the Hamiltonian slowly changes, it’ll end up as HHH o  ˆˆˆ , but along the way it’s  

 

 HtHH o  ˆˆˆ   

Where  t  starts out as 0 (so you’ve not yet started pushing) and ends up as 1 (when you’ve 

finished making the dent.) 

 

How does the new wavefunction depend on this ‘turning on’?  Who knows, but in principle, it 

does depend on it, and we can write out its dependence as a power series: 

 

...)3(3)2(2)1(  nnn

o

nn   

Where the ’s are the corrections (if it make you feel more comfortable, 
j

n

j
j

n
j 









!

1)( , but we 

won’t really be using that fact.)  

 

"Some of the notation, mainly the superscripts and subscripts, went over my head a bit. 

Their presence made the section hard to follow and differentiate the useful information 

from the rest."  Bradley W  
 

Similarly, the new energy must depend upon how ‘turned on’ the perturbation is; how, who 

knows?  But presumably that too can be expressed as a power series: 

 ...)3(3)2(2)1(  nnn

o

nn EEEEE   

Again, if it makes you feel more comfortable, you can imagine we’ve got a Taylor series here 

and 
j

n

j
j

n

E

j
E






!

1)( , but we won’t use that fact. 

 

The fact we will use is this the old familiar: 

 

nnn EH  ˆ  

 

But if we rephrase this in terms of our perturbation factor, , and all the correction terms, 

http://www.google.com/moderator/#11/e=213ead&u=CAIQ97eRwJGQwfpc
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     ........ˆˆ )3(3)2(2)1()3(3)2(2)1()3(3)2(2)1(  nnn

o

nnnn

o

nnnn

o

n

o EEEEHH 

 

Multiplying this out, we get 

 

 
 ...

...ˆˆˆˆˆˆ

)2()2(4)1()2(3)2(2)2()1(3)1()1(2)1()2(2)1(

)2(3)1(2)2(2)1(

nnnn

o

nnnnnn

o

nnn

o

nn

o

n

o

n

o

n

nn

o

nn

o

n

oo

n

o

EEEEEEEEE

HHHHHH







  

 

Collecting terms by powers in ,  

 

            0...ˆˆˆˆˆ )2()1()1()2()1()2(2)1()1()1(  o

nnnnn

o

nnn

oo

nnn

o

n

o

nn

oo

n

o

n

o

n

o EEEHHEEHHEH 

 

 

Now, this is a polynomial in  and it must sum up to 0 regardless of the value of .  So, what 

must be true of each individual coefficient of ?  Each must be individually equal to 0. 

...

ˆˆ

ˆˆ

ˆ

)2()1()1()2()1()2(

)1()1()1(

o

nnnnn

o

nnn

o

o

nnn

o

n

o

nn

o

o

n

o

n

o

n

o

EEEHH

EEHH

EH













 

6.1.2 First-Order Theory 
 

So, the 0
th

-order equation is the one we already knew: 
o

n

o

n

o

n

o EH  ˆ  

 if there were no perturbation, we’d have the original Hamiltonian which is solved by the original 

wavefunctions with their original energies. 

 

The 1
st
-order equation though, 

 
o

nnn

o

n

o

nn

o EEHH  )1()1()1( ˆˆ   

 

 is news.  Let’s see what we can get from it.   

 

 

1st-order Energy En(1) Correction. 
If we inner-product it with the known o

n , we have 

 

 o

nn

o

nn

o

n

o

n

o

n

o

nn

oo

n EEHH  )1()1()1( ˆˆ   

Of course, the energies are just numbers, so we have 

 o

n

o

nnn

o

n

o

n

o

n

o

nn

oo

n EEHH  )1()1()1( ˆˆ   

But 1o

n

o

n  , and the original Hamiltonian is most assuredly Hermitian, so we have 

)1()1()1( ˆˆ
nn

o

n

o

n

o

n

o

nn

o

n

o EEHH    
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And we know that the original Hamiltonian operating on the original energy eigenstate returns  
o

nE , so 

 )1()1()1( ˆ
nn

o

n

o

n

o

n

o

nn

o

n

o

n EEHE    

Now we can cancel the first term from left and right to be left with 

 
)1(ˆ

n

o

n

o

n EH   

Viola! We now know the first-order correction to the energy. 

 

Why Perturbation theory? 
Now you may well say ‘but wait, is this result of any use?  After all, we posited that  

...)3(3)2(2)1(  nnn

o

nn EEEEE   

And we’re really interested in the case when the perturbation is completely turned on, so 

=1, and that means all correction terms are equally important! 

 

That could indeed be the case; and in that case, perturbation theory wouldn’t be the way 

to tackle the problem.  Then again, if it’s not just that  was once-upon-a-time small 

(when we first started ‘turning on’ the perturbation to the Hamiltonian), but it’s that the 

perturbation is itself small, then we can hope that the 1
st
-order term will be bigger than 

the 2
nd

-order which will be bigger than… 

 

Then a Perturbation approach is useful. 

 

Exercise:  This works just as well whether we’re talking about a Hamiltonian operator expressed 

in differentials and wavefunctions as functions or the Hamiltonian as matrix and the 

wavefunctions as vectors. 

 








































000

0

0

300

020

00

ˆˆˆ 



o

o

o

o

V

V

V

HHH  

First off, what are the original Hamiltonian’s eigenvectors? 

 



















0

0

1

1

o  


















0

1

0

2

o  and  


















1

0

0

3

o  

 Then what’s the 1
st
-order correction to the energy for each? 

 

  



 






































0

0

1

000

0

0

001ˆ )(

1

)(

1

)1(

1

oo HE  

So the energy of the first state is, to 1
st
-order correction, 

 

 on

o

nn VEEE )1()(  
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"Could we go over the second part of example 6.1" Antwain  The following exercise is like the 

second part of example 6.1, but with a little more meat. 
 

Exercise:  A little more complicated,  Let’s go back to that infinite square well and tackle the 

same scenario we’d considered last time with the WKB: an electron in a 1-D solid with a voltage 

applied, i.e., a sloped bottom. 

 

 
a
xVexH ˆ  

 

        

    

        

 













nn

n
a

a

a

a
n

n
ax

a
n

n
a

a

a

a
n

a

a

a

a
n

a

a

a
n

aa
n

aa
x

a

a
n

a

o

n

o

nn

Ve
E

aVexxaVe

dxxxdxxVedxxxVe

dxxxVedxxVexHE

1)1(

2

2

2
11

0

2
2

22

2

2

2
11

0

2

0

1

0

2
2
12

0

222

0

2)()()1(

1
2

cossin

sinsin1

sinsinsinˆ

2

22

22

2













 






















 

So, the energy for each state, to first order correction, is 

 

 


nn

o

nn

Ve

a

n

m
EEE 1

22
)1()( 1

22















 

 

3. Starting Weekly HW: Griffiths 6.1 for part a) you do this, but with a delta-potential in the 

middle of the well. 

1st-order Wavefunction n(1) 
Alright, so we’ve gotten a little practice finding the first-order correction to the energy.  What 

about the wavefunction, how is that messed up because of a perturbation? 

 

"I'm confused why griffiths uses equation 6.11 in the derivation?" Jessica     

I'd also like to know how Griffiths uses 6.11 for the rest of the derivation.Spencer 

Ditto Jonathan 

Mmm...same. I follow the notation and such, but I'm still confused. Gigja 
 

Now, the trick is that our old solutions formed a complete basis set for this space, so the 

correction should be expressible in terms of that basis set.  However, one caveat – since this is 

supposed to be a correction term in  ...)3()2()1(  nnn

o

nn  , that’s a correction on top 

of  the 0
th

 order term,  o

n , our sum will step over this member of the basis set. 

  
)(

,

)1( o

m

nm

mnn c  


  Of course, as usual, 
mnn

o

m c ,

)1()(   

http://www.google.com/moderator/#11/e=213ead&u=CAIQh82e-eeMnvQC
http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
http://www.google.com/moderator/#11/e=213ead&u=CAIQu5iLusiE_aso
http://www.google.com/moderator/#11/e=213ead&u=CAIQ0Ij0vsWeq4BE
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So, we’ll use the 1
st
-order equation to get a relation for the 1

st
-order wavefunction which we can 

then inner-product to get the coefficients.  It goes like this.  The 1
st
-order equation is 

 

 o

nnn

o

n

o

nn

o EEHH  )1()1()1( ˆˆ         

 

Rewriting with the things we know on the right-hand side 

  

     o

nnn

o

n

o HEEH   ˆˆ )1()1(  

Inner producting that with )(o

m , 

 

   

o

m

o

n

o

n

o

m

n

o

m

o

n

o

mnn

o

m

o
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o

m

o

m

o

n

o

m

o

n

o

mnn

o

m

o

nn

o

m

o

o

n

o

m

o

nn

o

mn

o

n

o

mn

oo

m

o

nn

o

mn

o

n

oo

m

EE

H

HEEE

HEEH

HEEH

HEEH

























ˆ

ˆ0

ˆˆ

ˆˆ

ˆˆ

)1(

)1()1()1(

)1()1()1(

)1()1()1(

)1()1(

 

 

And that is  
mnn

o

m c ,

)1()(   

So 

)()1(

ˆ
o

m

nm
o

m

o

n

o

n

o

m

n
EE

H



 

 


    

 

note: not so useful if two original states have the same energy as the state you’re interested in.  

Wednesday’s reading is about handling that kind of situation. 

 

1. Conceptual: Can we use equation 6.13 to determine wavefunctions for the Helium atom 

based on a perturbation to a Hydrogen atom?  Why or why not? 

 

"Im a bit confused about the second homework question, mainly with what exactly a 

"perturbation to a hydrogen atom" actually entails." Sean M 
 

Well, as a first step, you’d want to make the simple change that Z=2, and we’d need to 

generalize the wavefunction to be a two-electron wavefunction.  That’s all easy enough 

(and was done in Chapter 4) but then the question is, can we treat the electron-electron 

interaction terms as a perturbation?   

We could go after the ground state since, in the unperturbed case, this is not degenerate.  

However, after that, there would be degeneracies in the other states.  For example, the n = 

2, l =1 and the n = 2, l = 0 have the same energies in the un-perturbed potential, so you 

couldn’t go after corrections for ether without the sum blowing up when the other one 

was added to the sum. 

http://www.google.com/moderator/#11/e=213ead&u=CAIQrcSZ8_rhmovIAQ
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Another issue is that the “perturbation” of the electron-electron interaction isn’t so small; 

if I remember, it’s maybe 1/5
th

 of the electron-proton interaction, so 1
st
 order may not be 

enough to satisfactorily accommodate for adding in this “perturbation.” 

 

 

Let’s give it spin. 

 

Exercise:  Returning to our matrix Hamiltonian, what’s the first-order correction to the first 

eigenvector?  
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First off, we have 
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So, the sum is 
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Exercise: Or, for the more complicated, differential-Hamiltonian case, with the sloped bottom in 

a square well, 
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For even m+n, the cosines are 1 which kills the whole thing; for odd m+n, they’re -1, so 
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0 for m+n even. 
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Not pretty, but there it is.  

 

1. Starting Weekly HW: Griffiths 6.1 for part b) you do this, but with a delta-potential in the 

middle of the well.  
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6.1.3 Second-Order Theory 
 

Now, in practice, if using a power series expansion is a good idea at all, it’s because the higher 

order terms are negligible, so you only need a few terms; i.e., in this context, if you’re dealing 

with a mere perturbation (thus the name).  So, we’ll go after the 2
nd

-order expression for the 

energy, but leave off there. 
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-order equation that we’d originally generated, 

 
o

nnnnn

o

nnn

o EEEHH  )2()1()1()2()1()2( ˆˆ   

 

2st-order Energy En(2) Correction. 
Once we’ve got the 1’st order energy correction and the 1

st
-order wave correction, then we know 

most everything in this expression.  Taking the inner product of this with o

n  will isolate the 

energy correction: 

 

)2()1()1()2()1()2(

)2()1()1()2()1()2(

)2()1()1()2()1()2(

ˆ

ˆˆ

ˆˆ

nn

o

nnn

o

n

o

nn

o

nn

o

n

o

n

nn

o

nnn

o

n

o

nn

o

nn

o

n

o

o

nn

o

nnn

o

nn

o

n

o

nn

o

nn

oo

n

EEEHE

EEEHH

EEEHH













 

The left most terms on both sides are equal and so cancel 
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But we already decided that the one member of our complete basis set of original 
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1. Starting Weekly HW: Griffiths 6.4.  2
nd

-order energy corrections for the delta-spike 

potential and for the perturbed harmonic oscillator (changed k )  

Note: you are not expected to prove Griffiths’ comment on part (a). 

For part b) Hint: You shouldn’t have to actually do any integrals if you recall that 

   aax
m

ˆˆ
2 


 and equations 2.66 tell you the result of the raising and lowering 

operators operating on a wavefunction.  In fact, you should find that, in some old, chapter 

2 homework you’ve already solved most of the key integrals. 

 

 


