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Equipment 

 Griffith’s text 

 Printout of roster with what pictures I have 

 Spherical Schrodinger handout 

 P plot.py 

 

 

Check dailies 

4.2 The Hydrogen Atom 
 

Having found the radial factors of the wavefunction for anything in a central potential, and 

tackled the comparatively easy infinite spherical well, we’re ready to go after the 1/r potential.  

More specifically, the electric potential shared by an electron and a proton defining a hydrogen 

atom. 

4.2.1 The Radial Wave Function 
 

Where we left off with the general radial equation was 
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Where that constant l(l+1) connects it to the spherical equation to form the full Shrodinger 

equation. 

 

We’d rephrased this in terms of a new function,  rRu   

 

So we could get the markedly-simpler 
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Now, to specify that  
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As Griffiths says, we want to tidy this up so we can see the forest for the trees and begin solving 

this differential equation. 

 

The first step is motivated by a factor that has appeared time and time again:  

/2mE  

In the event that the energy is itself negative, this is real, and in the event that energy is positive 

this is imaginary. 

 

In any event, if we divide our equation by E, we can rewrite our expression as 
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For that middle term, we kind of have to force it, but multiplying and dividing by 
2/2 m  
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Or defining  

r  ,  Note: this is unitless 

This cleans up a tad: 
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Now, there’s just one lone clump of constants; calling that 
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that looks considerably simpler: 
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1. Conceptual: What do ρ and ρ0 stand for?  Don’t just give an equation.  What are they, 

physically?  What units do they have? 

"After finding the units for p and p0 in eq. 4.55 I stil am not sure what they measn 

physically." Kyle B  

Yes! I have no idea either... Spencer 

Is p the hydrogen radius from the electron to its proton but normalized to some 

quantized Bohr radius (and p0 accords to the ground state energy)....? I'm confused. 

Gigja 

Yeah, the p0 units are pretty odd to conceptualize. Mark T,  

http://www.google.com/moderator/#11/e=213ead&u=CAIQv9Df9anNxM90
http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
http://www.google.com/moderator/#11/e=213ead&u=CAIQ0Ij0vsWeq4BE
http://www.google.com/moderator/#11/e=213ead&u=CAIQj43Tid3DpvW5AQ
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Aside from just plain looking less daunting, this simplified form lets us recognize a few 

things about the solutions. 

 

First, if we divide both sides by u to have  
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 And think about the meaning of that ratio: concavity of a function divided by the 

function.  If this is positive, then whenever the function is positive, above the axis, the concavity 

is positive too – which either means its bending away from the axis – either blowing up or as part 

of an exponential-ish decay.  If this is negative, then whenever the function is positive, the 

concavity is negative, so its arching back toward the axis, and it oscillates sine-like.  So, what 

determines whether it’s positive or negative? 
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In the simple, l =0 case, it’s quite straight forward 
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  is the like the boundary of a potential well – the wavefunction is significant 

and oscillating inside this range and decays away outside it. (That’s assuming that E<0 so k is 

real and  is positive.)   Translating that over to an actual distance, 
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This, of course, is the classical turning point, where the Energy equals the potential energy, i.e. 

there’s no kinetic energy because the particle has stopped. 

If l isn’t 0, the boundary shifts a bit, but this still gives us a length scale for the radial 

wavefunction. 

Speaking of length scales, in the oscillatory region, something sine-ish in r  , then the scale 

of the oscillating is  mE2//1   .  In fact, if we had an actual sine wave, then 
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mE2/2/2   , and so the number of waves lengths before it decays, out at o, would 

be   
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Out in the decaying region, exponential-ish, the scale of the decay is mE2//1   . 

So, these constants tell us a lot about the function; we already have a great qualitative picture of 

everything but what the allowed energies are anyway. 

 

Solving the Radial Equation 
Alright, on to solving this equation.  Griffiths takes an approach that’s very similar to what he 

took with hermite polynomials for the harmonic oscillator. 

 

Identify and factor out limiting behavior 
  
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 For which the solution is simply  
 BeAeu  

  or throwing out the term that blows up in this limit, 
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 And he points out that this has a general solution of  
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which is kind of obvious when you look at the equation for a moment. 

2. Math:  Show that 1)( l lDCu       satisfies 
2

2 2

( 1)d l lu

d
u

 


 . 

Again, we toss the solution that blows up in this limit, so  
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Plug this factored expression into the equation to get new equation for remaining 
mystery factor. 

Without going through the steps, I’ll just quote that doing that gets us 
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Recognize as amenable to series solution and find Recursion Relation 
 Like we had for the harmonic oscillator at this point, we have an expression that involves 

the second order derivative with respect to the variable, the first order derivative, the function, 

and the variable itself.  This suggests we could get somewhere with a series solution: 
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So, 
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Becomes 

         01221121
000

1

0

1  




















j

j

jo

j

j

j

j

j

j

j

j

j cljcjcljjc   

Or 

         01221121
0

11 






j

j

jojjj cljccjljjc   

Defining         jojjj cljcljjcg 1221211    , our differential equation 

has morphed into the requirement that  

0
0




j

j

jg   for all . 

 The only way that can be is if each coefficient is 0. 

         01222211   jojjj cljcljjcg   

 Which gives us a recursion relation: 

 

      

 
   j

o
j

joj

c
ljj

jl
c

cjlljjc





















221

12

212221

1

1





 



Phys 341 Quantum Mechanics Day 21 

6  

 

First, notice that this recursions relation doesn’t skip every-other term as does the one for hermite 

polynomials, so we’ll get even and odd terms. 

Ball park sum’s convergence and its behavior – deduce need to terminate sum 
If we want to see what a sum of terms that are thus related adds up to, we can expect that 

eventually the terms get to large enough j that we have j>> anything it’s added to or subtracted 

from. 

For j >> 1 
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Which blows up as  goes to infinity – not the behavior we want. 

The only way this catastrophe can be averted is if the sum terminates.  That is, there’s a 

maximum jmax, beyond which cjmax + 1 = 0, and thus all others do to. 
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Where (l+1+jmax) = n = 1, 2, 3,… 

Or 

 jmax = n-1-l   
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note that, for a given n, the largest l can be is when jmax = 0.  And then it’s lmax = n-1 

So, we’ve just tied our limit on l to that on n. 

 

l = 0, 1, 2, … n – 1. 
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Extract energy quantization requirement from limit to sum. 
Going back to the definition of o in terms of constants and E, we now have an expression 

for the allowed energies: 
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For that matter, we can now go back and nail down expressions for a few things: 
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0) and it’s the classical ‘turning point.’ 

Not going through the classical argument, but I’ll remind you from Phys 231 that the radius 

of a stable circular orbit is half this.  For n = 1, this distance goes by the name of Bohr’s radius: 
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3. Math: Explicitly plug in constants to derive numbers in equations 4.72 and 4.77.  Show 

explicitly that the units work. 

 

Assemble Solutions 
And we have  
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"Can we talk about the Laguerre polynomial because I'm still confused where 

they come from in the derivation of 4.89." Jessica   

http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
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Griffiths rephrases the sum in terms of Laguerre polynomials.  He doesn’t derive the relation, 

just presents it: 

Note: while he didn’t derive this representation, by analogy with the simple harmonic oscillator, 

we shouldn’t be surprised that it can be represented this way – there were the two ways of 

coming up with the solutions: one was creating a generating operator (the creation operator) and 

the other was coming up with a recursion relation in the power-series expansion. 

I suspect there’s something wrong with his expression, or I’m putting it together wrong, because 

I get only a few terms when I put it all together. 
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4. Starting Weekly HW: Griffiths 4.11 

5. Starting Weekly HW: Griffiths: 4.13 

 

Putting together the whole wavefunction 
 

nlm … 

 

 

4.2.2 The Spectrum of Hydrogen 
 

This subsection should be familiar from Phys 233.  While it’s some of the pay-off for doing all 

this hard work, it’s familiar enough to not be worth going over. 

  

1. Math: Calculate the Rydberg constant.  Be explicit, especially with units. 

2. Conceptual: What is the wavelength of Hydrogen-alpha?  What is the transition that 

produces this wavelength? 

 


