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Equipment 

 Griffith’s text 

 Printout of roster with what pictures I have 

 Spherical Schrodinger handout 

 P plot.py 

 

 

Check dailies 

 

Announcements: 

Math-physics research presentations today 4pm AHoN 116 

4.1 Schrödinger Equation in Spherical Coordinates 

4.1.1 Separation of Variables 

Central Potential and Spherical Coordinates 
 

If we’re interested in a “central potential”, that is, one that only depends upon how far the particle is 

from something (for example, an electron is from a proton), then the potential has spherical symmetry, 

and so we want to phrase the Schrodinger equation in spherical coordinates. 
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Then we can hope for separability: 

 

       tYrRtr  ,,,,   

 

Indeed, multiplying by r
2
, plugging in and dividing by the wavefunction gets us an equality 

between terms that clearly don’t depend on theta or phi and terms that clearly don’t depend on r, 

so these terms must equal a constant: 
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Wed.10/22 

Thurs 10/23 

Fri.10/24 

4.1.2-.3  Schrodinger in Spherical: Angular & Radial(Q9.1) Computational: Spherical Schrodinger’s 

 

4.2 Hydrogen Atom (Q9.1) 

Daily 8.W 

Weekly 8 

Daily 8.F 
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4.3 Angular Momentum 

 

4.4.1-.2 Spin ½ & Magnetic Fields (Q5.5,6.1-.2, 8.5)  

4.4.3 Addition of Angular Momenta 
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4.1.2 The Angular Equation 
 

Griffiths goes after the angular equation first.   
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Heck, now that we’ve got a taste for separability, you probably recognize that the and  

dependence is separable. 
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Plugging this in and dividing by it, we have 
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Since we don’t have a reason to believe that the wavefunction is simply 0 at a particular angle, 

guessing cosines or sines may not be the best, so we’ll go with exponentials. 

   ime  

does the job, and it’s already normalized! 

If we require that the wavefunction be single valued in space, then this needs to have the 

property that  

    2  

You may remember from last week’s homework that this is easily satisfied if 
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  Dependence 
Now, the  equation’s not so simple.  Griffiths doesn’t even pretend to lead us through a 

derivation of that solution; instead he names it and gets us familiar with it. 

I’ll back up at least one step to motivate it a little.  The equation is 
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At the end of last time, I showed that this could be rewritten as  
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Where  cos  

 

Finally, just quoting Griffiths (who’s just quoting someone else), and putting together 

equations 4.27 and 4.28, we have 
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No, that wasn’t self-evident, but looking at the form of the differential equation, it’s certainly 

gets points for plausibility. 

 

"This is a more simple question about the Rodrigues formula (eqn 4.28 p. 136 U.S. 

book): the factorial only applies to l not 2^l, correct?" Gigja    

Yeah, from the looks of it, that factorial is only being applied to the L Jeremy 
 

Let’s look at it (see Python program P.py) 

 

Why must lm  ? 
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 is 0  for l+|m| > 2l,  thus lm   . 

So, we are one massive step nearer to having our solution, 
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http://www.google.com/moderator/#11/e=213ead&u=CAIQ0Ij0vsWeq4BE
http://www.google.com/moderator/#11/e=213ead&u=CAIQ3Pb8yM2Lz-c1
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Normalization of Y 
Though he doesn’t yet have the full expression in hand, at this point, Griffiths begins addressing 

the question of normalization. 

Remember, our approach to normalizing has its origin in the notion that summing the 

probabilities over all possibilities should result in certainty: a probability of 1.  Where, in 3-

space,  dVoltr /),,,Pr(
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1. Math: Where does equation 4.30 come from?  Explain. 

Now, in spherical coordinates, the differential block of volume, the product of differential steps 
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Now, you could look at these two integrals as the probabilities of finding the particle at any 

distance and the probability of finding it in any direction, each of which should be 1. 
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Griffiths just quotes the resulting normalization factor for the angular integral 
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1. Conceptual: Is this expression valid if V is a function of ?  Explain. 
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Note that we have just found the possible angular dependences of the wavefunction for 

any central potential.  It could be 1/r like the electric potential, it could be r
2
 like a 

harmonic oscillator, or it could be (as we’ll look at in a moment) the infinite spherical 

potential.  All that we’ve required thus far is that the potential only depend upon r, but 

not how it depends upon r. 

 

2. Starting Weekly HW: Use equations 4.27, 4.28, and 4.32 to construct 0 0 2

1 2 2, ,  and Y Y Y  .  

Show that they are normalized and orthogonal.  Show that they satisfy the differential 

equation 4.18. 

 

 

4.1.3  the Radial Equation 
 

Now it’s time to think about that radial dependence.  When last we left r, it was in this 

equation: 

 

     












































2

2

22

22

sin

1
sin

sin

11
1

21






YY

Y
llErV

m
r

r

R
r

rR 
 

We’d looked at the right hand side of the equation to dig into the angular dependence, but 

now it’s time to look at the left hand side of the equation: 
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Or rewriting it in a suggestive way, 
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So, in terms of u, this relation looks pretty familiar 
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Where  
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"Why is there an additional term for the effective potential? What causes this centrifugal 

term?" Spencer 

Very Quantum Classical 
I should pause here and note that, since most of you’ve not yet taken Classical Mechanics yet, 

you might get the impression that this funny business about defining an effective potential and 

defining a new function that incorporates r is quantum-specific, but it’s not.  It’s exactly what 

you’ll do for a central potential in classical mechanics too. In that case, the function that’s 

getting dealt with is the angular position of an orbiting body as a function of its distance.  In 

classical, the effective potential takes the form of  
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Where L is the angular momentum associated with the orbit.  Keep an eye out; it won’t be long 

before we make the same identification here. 

It’s worth taking a moment to think about what this potential looks like and why.  To keep things 

nice and tangible, say we’re considering a planet orbiting the sun.   
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Spherical coordinates are best since there’s a central potential, so we convert the expression for 

momentum over to spherical coordinates.  That means we ask what’s the rate of change of 

position along each of the orthogonal coordinate directions: 
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Now, as you know, a planet orbits in a plane, so if we define the plane of the orbit to be x-y, then 

 is a constant 0, so  
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http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
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It’s worth recalling from Phys 231 that, for a central potential, the angular momentum is a 

constant so L
2
 is a constant– okay, it’s not )1(2 ll , but a constant none the less. 

 

Now, what does it mean to have this effective potential?  Well, think about what orbits look like: 

big ellipses.  The distance between Haley’s comet and the sun vary but, in spite of having an 

attractive gravitational potential, the comet never crashes into the sun, rather it whips around the 

sun, and how much something is moving ‘around’ a point is quantified in its angular momentum. 

 

 

 

 

 

 

 

 

Now, be it classical or quantum mechanical, we can’t go much further with the radial term unless 

we know the actual form of the potential.  Of course, we’re headed for a 1/r potential (classically, 

that’s of great interest for the gravitational interactions, but for us, it’ll be the electric interaction 

that interests us.) 

Infinite Spherical Well (Example 4.1) 
A simpler potential to initially consider initially is the infinite spherical potential: there’s some 

hard boundary, beyond which the particle simply cannot go. 

 

 

 

  

 

So, inside this well, the equation to solve is 
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Special case: l = 0 
Obviously, if we had l = 0, it would be the exact same equation as for a particle in a 1-D infinite 

square well, and we’d get sines. 
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And the radial wavefunction would then be  
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General Case 
Again, Griffiths merely quotes the result: there are two linearly independent solutions for this 

second-order differential equation, spherical Bessel functions and spherical Neumann functions. 

 

1. Conceptual:  The solution to the infinite spherical well potential consists of Bessel 

functions (eq. 4.47).  What happened to the Neumann functions? 

Same reason we dismiss cosine: it doesn’t match the boundary conditions, in particular, it 

blows up at r = 0. 

"Can we take a peek at the derivation of the bessel functions?" Casey P 

P. 465 of Liboff, problem 10.66 defines creation and annihilation operators for them and then you can see 

that, once you’ve got one, you can generate the rest. 
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http://www.google.com/moderator/#11/e=213ead&u=CAIQytbjmuXUx99L
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So once you’ve got one (which we have, the l = 0 case), you can generate them all. 
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 so the derivative acts upon the next 

factor’s 1/(kr). 

 

 

"Can we go over what beta_nl represents. I'm still a little confused about what it means." 

Jessica     

i am confused on this as well Kyle B, 

I am also unsure on how the beta_nl suddenly appeared in equations 4.49 & 4.50 Jeremy,  

 

 

Imposing the boundary condition that this must go to 0 at r = a,  

    0,  akAjaR nlln  

Leads to determining what kn must be (just as matching that boundary condition got kn = n/a 

when the function was sine.) 

Practically, how do you find k for a given Bessel function? 

Since they’re transindental, you have to plot and zero-find. 

For example, looking at Figure 4.2 (where “x” is ka ),  

    010,1  akAjaR o , that is the 1
st
 time that Bessel function goes to 0 is about kna=3.2. 

2. Conceptual: What is meant by nl ?   

The nth value of its argument for which the lth Bessel function goes to zero is 

denoted nl  

http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
http://www.google.com/moderator/#11/e=213ead&u=CAIQv9Df9anNxM90
http://www.google.com/moderator/#11/e=213ead&u=CAIQ3Pb8yM2Lz-c1
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That is nl =kna. that is 
a

k
ln

ln

,

,


 .  So it’s akin to the n for sines. 

Griffiths notes, but you’ll show 
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3. Conceptual: Mathematically, why doesn’t the energy depend on m?  

Better yet, conceptually, why doesn’t the energy depend on m?  

Classically, implicit in our choice of coordinate systems, the orbiting is happening about the 

z axis.  Meanwhile, the wavefunctions are describing the shape of the orbitter where l 

describes how it varies as you move down the Z axis and m describes how it varies as you 

look around the Z axis.  The angular momentum of an object about the Z axis wouldn’t 

depend upon how it was distributed around the Z axis (in and out, yes, but not around).   

4. Starting Weekly HW: Consider 2( ) ( )u r Arj kr . 

a. Show that it satisfies the differential equation 4.41 with l=2.   

b. Make a plot of this function. 

c. Where is the first place the function goes to zero where x>0? 

d. What is n? What does this mean for k?  What is the energy in terms of , m, 

and a? 

5. Starting Weekly HW: Computational: Create a version of your Discrete, time-

independent program to find the Angular components of the wave function in spherical 

coordinates  and modify it to find the Radial components of the wave function for an 

infinite spherical well.  See Handout. 

 


