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Thurs 10/16 

Fri. 10/17 

3.5 Uncertainty Principle   

 

3.6 Dirac Notation  (Q5.6) 

Daily 7.W  

Weekly 7 

Daily 7.F 

 

Equipment 

 Griffith’s text 

 Printout of roster with what pictures I have 

 Whiteboards and pens 

 

 

Check dailies 

 

Announcements: 

 Note: Weekly does include 3.11 and 3.15 as advertised in related daily’s but not the 

weekly. 

 

Daily 7.W Wednesday 10/15 Griffiths 3.5  Uncertainty Principle 

1. Math: Write 
a

b

 
 
 

 in terms of |+x> and |-x>. 

 

 

"Why does the axiom on functions in Hilbert spaces need to be and axiom? Is it 

unprovable as a theorem?" Casey P 

Exactly.  He notes that it can be demonstrated / proven for some particular cases but not for others.  In 

fact, he mentions that it’s odd calling such a thing an “axiom” but it certainly isn’t a provable “theorem”. 

3.5 The Uncertainty Principle 
1. Any questions about the mathematical derivations in this section.  Are there steps that 

didn’t make sense? 

Without having generally proved that it should be true, we’ve been using, checking and 

double checking, the momentum-position uncertainty relation, 2/px , for a while now.  

Here, Griffiths doesn’t just prove that inequality, he goes a step further and proves the 

general uncertainty principle for all operators.  That nifty relationship, the commutator, plays 

a key role. 

3.5.1  Proof of the Generalized Uncertainty Principle 
 

 

Way back in Chapter 1, Griffiths had defined the “Variance” of a distribution of measurements 

as the average of the square of the deviation of individual measurements from the average 

measurement: 

http://www.google.com/moderator/#11/e=213ead&u=CAIQytbjmuXUx99L
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 22 aA    where aaa    (eqn’s 1.10 and 1.11) 

So 

 22 aaA   

Now, the next step is to invoke the identification that the average of any observable, <q> is 

found in our model (quantum mechanics) by taking the inner implied in the notation   

 QQq ˆˆ   

Arguably,  aaa   is an observable, and the associated operator would be  

aA ˆ  

(to avoid confusion, I’m using the lower case a to represent the value returned and the upper-

case to represent the operator.) 

 

So, 

            aAaAaAA
ˆˆˆ

2
2  

Now, in this chapter we’ve argued that all operators associated with observables must be 

hermitian, i.e., must be able to be applied to the other function in the inner product and yield the 

same result (given that at least one of the functions dies off at infinity, thus is normalizable –that 

was a key step in the derivation). 

       aAaAaAaAA
ˆˆˆˆ2  

As a short-hand, Griffiths denotes the new function,   aAf ˆ so we can write  

ffA 
2  

Similarly, for some other measurable, b, we can reason that 

    ggbBbBB  ˆˆ2 . Where   bBg ˆ  

Then 

ggffBA 22  

The next step goes something like this: 

f
ff

gf
gh   and thus f

ff

gf
gf

ff

gf
gh

*

*

*

  

Of course the inner product of something with itself is positive and real so we can drop the 
*
for 

the f-f inner product. 

For that matter, the h-h inner product must be positive and real too: 
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ff

gf
gg

ff

gf

ff

gf

ff

gf
gg

gf
ff

gf
gf

ff

gf

ff

gf
gg

gf
ff

gf
fg

ff

gf
ff

ff

gf
ggf

ff

gf
gf

ff

gf
ghh

2

222

*

*

2

*

2

2*

0

0

0

0






































 

ffgggf

gfffgg





2

2
0

 

 

So,  

We can now say that 

 
222 gfggffBA         (1)  We’ll return to this later 

 

The next step in the derivation is to observe that 
222222 gfgfgfgfBA ImImRe      (2) we’ll return to this later too 

What is the imaginary part in terms of the whole?  Well, if we can write it in the form of  

imre izzz   and similarly imre izzz *  then  *zz
i

zim 
2

1
 

So, 

 
2

22

2 











 


i

gfgf
BA

*

   where fggf 
*

 

 
2

22

2 








 


i

fggf
BA  

 

Time to go back to talking about the operators A and B. 

 

              aAbBbBaAaAbBbBaAfggf ˆˆˆˆˆˆˆˆ

once again using that the operators are hermitian to move them across the inner product 
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      

    

   BAABBAABBA

abaBAbABbaBabABA

aAbBbBaAfggf

ˆ,ˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆ

ˆˆˆˆ







 

So, at long last, we have  

 
2

22

2 
















i

BA

BA

ˆ,ˆ

  

 

 

Starting Weekly HW: Griffiths Problem 3.15 Show that two noncommuting operators cannot 

have a complete set of common eigenfunctions. 

 

Say   bmbmanan ccf ,,,,  , so it’s describable in terms of both basis sets, that is, 

they are both complete enough to describe it. 

       bmbmmmbbmbmmbbmmb ABbAcABBAcABBAcfABBA ,,,,,
ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ     

Now, if the eigen states are the same for A and B, then bman ,,    and we have  

     annanmnmbananmmb aBbacABbAcfABBA ,,,,
ˆˆˆˆˆˆˆˆ     

And switching back again, bman ,,   , 

      0ˆˆˆˆˆ
,,,,   bmnmbmmnmbbmnbmmnmb abbacaBbacfABBA   

So, the commutator is 0 and thus the uncertainty principle simply says that the products of the 

standard deviations is equal to or greater than 0. 

 

However, if they are merely complete, but not the same eigenfunctions, then it’s the case that 

 
n

anmn

n

anbmanbm d ,,,,,,   and similarly  
n

bmmn

m

bmanbman d ,

*

,,,,,   

So 

        









m n

anmnbmmmb

m

bmbmmb

m

bmmb dABbAcABBAcABBAcfABBA ,,,,,,
ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ 

  

  

  












































































































m n m

bmmnnmnm

n

annmnmb

m n m

bmmnnmnm

n

annmnmb

m n

annmnm

n

annmnmb

m n

annmnm

n

anmnmb

dadBbadc

dadBbadc

adBbadcadBbdAc

,

*

,,,,

,

*

,,,,

,,,,,,,,

ˆ

ˆ

ˆˆˆ







 



Phys 341 Quantum Mechanics Day 17 

5  

 

     













































m n m

bmmmnanmnmnmb

m n m

bmmmnnmnm

n

annmnmb bdbadcbdadbadc ,

*

,,,,

*

,,,, 

 

And then getting it all back in the same basis set  

 

    











 









m n

mm

m

bmnmnmnmb

m n m

bmmmn

m

bmmnmnmnmb bbaddcbddbadc ,,

*

,,

*

,,

*

,,   

Which won’t go to 0 unless mnmnd ,,  , that is, the two basis sets are the same. 

 

Could we talk about how we know if two observables are compatible or incompatible? 

What does it mean to have shared eigenfunctions?" Spencer   

I agree, can we go over this? Jessica 

Does shared eigenfunctions literally mean they have the exact same eigenfunctions (and 

eigenvalues)? Gigja 

Does the complete set of eigenfunctions have to be simultaneous for observables to be 

compatible? Kyle B 

The laboratory explanation makes sense to me, in that the outcome of the second 

measurement can't contradict the first for them to be compatible, but how to determine it 

mathematically is not clear.Bradley W 

 

Now, you may be wondering “why go with the imaginary in the first place?”  We 

could have gone after the real part instead:  
222222 gfgfgfgfBA ReImRe   

 *zzzre 
2

1
 which would have led to 

2

22

2 








 


fggf
BA  

Which eventually gets us to  

    

  

 

ABBA

bababaABBA

BabAbaABBA

abaBAbABbaBabABA

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆ









2

2
 

 

So it must also be true that 

2

22

2 













 


ABBA

BA

ˆˆˆˆ

  

I don’t a priori see a reason one of these conditions would be more restrictive than 

the other. 

http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
http://www.google.com/moderator/#11/e=213ead&u=CAIQ0Ij0vsWeq4BE
http://www.google.com/moderator/#11/e=213ead&u=CAIQv9Df9anNxM90
http://www.google.com/moderator/#11/e=213ead&u=CAIQ97eRwJGQwfpc


Phys 341 Quantum Mechanics Day 17 

6  

 

 

Let’s give this a go for the position and momentum operators: 

 

dx

d

i
pB

xxA






ˆˆ

ˆˆ

       
 

2

22

2 














i

xppx
px

ˆˆ,ˆˆ
     

   

     

 
iii

px

x
dx

d

idx

d

i
x

dx

d

i
xpx

x
dx

d

idx

d

i
xpx













ˆ,ˆ

ˆ,ˆ

ˆ,ˆ

 

     

2

22

22

22























 


px

px
i

i




/

 

 

The general uncertainty principle’s derivation is quite general.  It only supposes that there are 

two measurable.  As you’ll connect in the homework, if they completely share a basis set of 

eigen states, then the commutator for the observables will be 0, and they two measurements are 

compatible – being in a state for which one measurement is definite, the other measurement is 

also definite.  Conversely, if the two observables do not completely share a basis set, then 

measuring one observable can leave you in a state for which the other observable’s value is not 

determined, and there will be an uncertainty. 

 

Math: Construct the uncertainty relation for Energy and position. 

2. Starting Weekly HW: Consider three observables, A, B, and C. We know that [B, C] = A 

and [A, C] = B.  Show that 
2 21

2
CAB A B

i
   . 
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3.5.2 The Minimum-Uncertainty Wave Packet 
 

Looking back over our derivation, we have

 
2

2

222222

22 
























 


i

BA

i

fggf
gfgfgfgfggffBA

ˆ,ˆ

ImImRe

 

where   aAf ˆ  and   bBg ˆ . 

 

The minimum uncertainty is when these limits are equalities: 

fggfggff                    
222

gfgfgf ImImRe   

This works if g = cf:      This works if 0
2
gfRe , so  

ffccffffccff

fcfcffcfcfff

** 


    gf  is purely imaginary. 

 

Putting these two together,  

   cffccffgf   where c is imaginary.  Making that explicit: 

c = id  where d is real. 

 

So, we have that g = idf 

Or plugging back in in terms of the operators and average values,  

    aAidbB ˆˆ  

 

 

Momentum & Position 

dx

d

i
pB

xxA






ˆˆ

ˆˆ

 

 







 xxidp

dx

d

i


 

This differential equation is solved by     /pixxd
eAex

2


  a Gaussian. 
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3.5.3 The Energy-Time Uncertainty Principle 
 

1. Starting Weekly HW: Show that the expectation value of any observable in a stationary 

state does not change with time, provided the time rate of change of the operator for the 

observable is zero.  

Since time isn’t a ‘measurable’ in the sense that it’s a property of a particle; as Griffiths puts it, 

time is the independent variable upon which the system’s position, momentum, and energy may 

be dependent.   Say we have an observation that depends on time. 

 

 

 








 Q

t
Q

t
Q

dt

d
q

dt

d ˆˆˆ  

If the operator itself has time dependence,  tpxQ ,,ˆ , then the second term splits into two 

 

  















t
Q

t

Q
Q

t
q

dt

d ˆ
ˆ

ˆ  

We can call on Schrodinger’s equation to substitute 



H

t
i ˆ  

  H
i

Q
t

Q
QH

i
q

dt

d ˆˆ
ˆ

ˆˆ


11





   

Using that the Hamiltonian (energy operator) must be hermitian to yield real measurable 

energies, 

 

     

 
t

Q
QH

i
q

dt

d

t

Q
HQQH

i
HQ

it

Q
QH

i
q

dt

d




















ˆ
ˆ,ˆ

ˆ
ˆˆˆˆˆˆ

ˆ
ˆˆ





11

 

Invoking the general uncertainty principle,  

 QH
t

Q
q

dt

d

i
ˆ,ˆ

ˆ























  22
2

22

222 



















































































dt

qd

t

Q

t

Q
q

dt

d

iii

QH

QH

ˆˆˆ,ˆ 
  
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I

 

2

222

2
2





































































dt

qd

t

Q

dt

qd

t

Q

t

Q
q

dt

d

iii

QH

Q

H

QH

ˆ

ˆˆˆ,ˆ






 

The ‘uncertainty’ in t is then defined as 

dt

qd

t

Q
t

Q







ˆ


 and we have   

2


tH  

In the case that the operator has not time dependence, and it’s just that the observable’s average is 

changing, 

dt

qd
t

Q
     Or Q

dt

qd
t   so the time we’re talking about is the time it takes for the average 

measured value to drift by one standard deviation (if the rate of change were constant.) 

 

 

Example:  mixed state for the simple harmonic oscillator, time for the average position to 

change. 

He warns that the energy-time uncertainty principle is ‘robust’ enough that people can use it with 

pretty misguided concepts in mind and still get good answers, like the notion that conservation of 

energy can be violated.  A spread of energy states go into constructing the system, that doesn’t 

mean that energy itself varies. 

 

"Can we go over what "substantial change in a system refers to in regards to delta t?" 

Mark T,  

Often the uncertainty relations are used for ‘rule of thumb’, ‘back of the envelope’, or ‘ballpark’ 

kinds of calculations.  So folks get pretty vague when using it.  Concretely, the defining 

relationship is  

Q
dt

qd
t   

But if we’re just spitballing, the time it takes for a noticeable change (since the standard deviation 

is our rough measure for the width of a distribution of measurement values.) 

http://www.google.com/moderator/#11/e=213ead&u=CAIQj43Tid3DpvW5AQ
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