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The Electric “Displacement” 

Now we also relate “bound” charge (due to variation in density of dipoles) 
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Quite Generally, Gauss’s law says 
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So, if you have a region with dipoles and free charges, 
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So Gauss’s Law for free charge and Electric Displacement 
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The Magnetic “Auxiliary” 

Now we also relate “bound” charge (due to variation in density of dipoles) 

Quite Generally, Ampere’s law says 
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Magnetic auxiliary field 

So Ampere’s Law for free current and the auxiliary field 

and 
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Example 6.1: A long copper rod of radius R caries a uniformly distributed (free) 
current I.  Find the auxiliary field, H, every where.   
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The Magnetic “Auxiliary” 



Magnetization & Auxiliary Magnetic field 
Example 

Consider a huge slab of magnetized material initially in the presence of a uniform field 
(partly due to itself, partly due to other sources in the environment) and corresponding 
uniform polarization and electric displacement                                 . 

oB


oM


You cut a small spherical hole out of it.  What is the field in 
its center in terms of       and        ? oM


oB


For illustrative purposes only, take the Magnetization to be 
parallel to the field, and imagine both to be in the z direction. 

Quoting Example 6.1 (which in turn builds on 5.11), the field 
inside a uniformly polarized sphere is  

By Superposition Principle, cutting out a sphere is the same as 
inserting a sphere of opposite magnitization. 
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Example 

You cut a small spherical hole out of it.  What is the field in 
its center in terms of       and        ? 

There is no material in the sphere, so 

What is the auxiliary field in its center in terms of       and        ? oH
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Magnetization & Auxiliary Magnetic field 

oM
oB


Consider a huge slab of magnetized material initially in the presence of a uniform field 
(partly due to itself, partly due to other sources in the environment) and corresponding 
uniform polarization and electric displacement                                 . 
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You cut out a tall and narrow cavity along       .  

Magnetization & Magnetic Auxiliary 

Exercise: Consider a huge slab of magnetic material initially with uniform field,      and 
corresponding uniform polarization and magnetic auxiliary                           . 

oB


What is the field in its center in terms of       and      ? 
oM



oB
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What is the electric displacement in its center in 
terms of       and        ? 

oH
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oM


Hint: Think of inserting the appropriate rod of opposite 
magnetization, determining its bound current, and the field 
of that configuration of current. 
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Recall for D: 
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Now for H: 

So H isn’t necessarily analogous to B, unless M happens to be divergence-less 

The Magnetic “Auxiliary” 

So D isn’t necessarily analogous to E, unless P happens to be curl-less 
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Example:  Magnetization parallel to cylinder's axis: 
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Amperian box There is flux in the bottom, but none out the other sides. 
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Boundary Conditions 
Magnetic Auxiliary field, along current-carrying surface 
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Boundary Conditions 
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Magnetic Auxiliary, across boundary of two materials 

As for B, it’s got no divergence 
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Boundary Conditions 
Magnetic and Auxiliary fields 

Along 
nMKKK bfree
ˆ
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Exercise 
Bar Magnet: uniform M along axis 

Sketch 𝑀, 𝐵, and 𝐻 as to obey the boundary conditions. 
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Linear Para/Dia-magnetic 
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Diamagnetic is clearly linearly dependent on B 

While an individual electron’s paramagnetic term isn’t 
linearly dependent on B, the fraction of a large population 
of atoms that get their electrons aligned is fairly linearly 
dependent on B. 

So, for many materials, to a good approximation,  BM




And since                              we can also say  MHB o


  HM




Putting a name to the proportionality constant: HM m




(Inconsistency Warning: for 
polarization and electric field, 
the constant was defined 
between P and E, but this is 
between M and H.) 
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Permeability 

Combining things: 

or 

or 

Paramagnetic   > 0 
Diamagnetic   < 0 
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Linear Diamagnetic 
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This atomic dipole’s personal space, , is that of an atom, in a 
cubic lattice with atoms distance d apart, that’s  
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But  is defined as the proportionality constant between M and 
H, not M and B, so rephrasing with the help of                                    
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Right ballpark for 
values in Table 6.1 

 We’ll think about that atomic scale. 

Plugging in, 



Example/Exercise:  A coaxial cable consists of a copper wire of radius a 
surrounded by a concentric copper sheath of radius b.  Copper has a 
magnetic susceptibility m.cu.  The space between is filled with an insulating 
material of susceptibility m.i.  If a current I flows up the inner wire 
(uniformly distributed across the wire’s cross-section) and down the outer 
sheath,  
a) find the Auxiliary field everywhere 
b) Find the Magnetization everywhere 
c) Find the Magnetic field everywhere 

a b 

m.i 

m.cu 

ldHadJI freefree


  HM m


 MHB o


 

Linear Para/Dia-magnetic 

I’ll do for s<a (inside coper wire), 
you’ll do b<s<a and s<b 



The other magnetism 

Ferromagnetism 

The 3d level is actually higher energy than the on-average 
larger 4s (which has 4 radial peaks, one closer to the nucleus 
than the 3d’s inner radial peaks), so Iron and its neighbors 
have filled 4s but only partially filled 3d which is too far in to 
covalently bond but far enough out to overlap with 
neighboring irons’ 3d’s and form a conduction band.  So they 
can share extended wave functions and long wavelength’s it’s 
energetically favorable for electrons in this band to be spin-
aligned! 

Fe:  1s22s22p63s23p63d64s2 

(http://www.theeestory.com/topics/9807) 

Full 4s 

Not full 4p 
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Exercise: There are two spinning metal spherical shells with radii R and 3R 
and equal and opposite surface charge.  There is material with a 
susceptability m between radii R and 2R.  What is the magnetic field 
everywhere? 

R 

2R 

3R 

r 



Boundary Conditions & Linear Material 
Magnetic fields 

Along 
nMKKK bfree
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Exercise: Problem 6.27 
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