
Prep for Exam 2: topics covered, equations encountered 

Ch 5. Oscillations 

5.1 Hook’s Law 
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 Taylor Series 

o For a given potential or force, find the 2nd-order term in the Taylor Series and thus the 

‘spring stiffness.’  
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5.2 Simple Harmonic Motion 
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Use Euler’s relations to move between these different representations 

e i t cos t isin t  

 The Exponential Solutions titi eCeCtx 21  

 The Sine and Cosine Solutions x t B1 cos t B2 sin t  

 Phase-Shifted Cosine Solutions tAtx cos  

 Solutions as the Real Part of a Complex Exponential x t Re Ae
i t

 

 Energy Considerations 

5.3 Damped Oscillations 
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5.4 2-D Oscillators 

5.5 Driven Damped Oscillations 
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 Linear Differential Operators: a linear combination of solutions is also a solutions,  

 Particular and Homogeneous Solutions:  x = xh + xp 
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 Complex Solutions for a Sinusoidal Driving Force  
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 Resonance 
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 Width of the Resonance: the Q Factor o
2

1  

 The Phase of resonance 
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5.7 Fourier Series 
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5.8 Fourier Series Solution for the Driven Oscillator  

A force like 
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Gives rise to a solution like 
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5.9 RMS Displacement Parseval’s Theorem 

 

Chapter 6 Calculus of Variations 

6.1 Shortest Path and Fermat’s Principle 
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6.2 Euler-Lagrange Equation 



Prep for Exam 2: topics covered, equations encountered 

Generally, 
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6.3 Applications of the Euler-Lagrange Equation 

 Shortest path on sphere, on cylinder, minimum potential energy curve, minimum time path in 

gravitational field. 

Maximum and Minimum vs. Stationary 

6.4 More than Two Variables 

S f x u ,y u ,z u ,x u ,y u ,z u ,u du
u1

u2

 

To max/min-imize (or find stationary),  
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Needn’t be Cartesian, for example, 

 

 

 

Chapter 7 Lagrange’s Equations 

7.1 Lagrange’s Equations for Unconstrained Motion 

   L T U  

 Regardless of what coordinates we express it in terms of 
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 Of course, that’s equivalent to saying that the Lagrangian satisfies the differential equations 



Prep for Exam 2: topics covered, equations encountered 

 0
ii qdt

d

q 

LL
 for all the individual coordinates. 

 Several Unconstrained Particles 

7.2 Constrained Systems; an example 

 At least one ‘degree of freedom’ can be rephrased in terms of another. 

 Spring-mass-pulley-hanging mass 

 Mass on parabolic wire 

 Mass on sphere 

 Pendulum hanging form cart 

 Bob hanging from orbiting disc 

 Double pendulum 

 Block sliding down slipping slope 

 Mass on spinning parabolic wire 

7.3 Constrained Systems in General 

 Degrees of Freedom 

7.4 Proof of Lagrange’s Equations with Constraints 

 The Action Integral is Stationary at the Right Path 

 The Final Proof 

7.5 Examples of Lagrange’s Equations 

7.6 Generalized Momenta and Ignorable Coordinates 

7.7 Conclusions 

7.8 More about Conservation Laws 

 

 

 


