Prep for Exam 2: topics covered, equations encountered

Ch 5. Oscillations

5.1 Hook’s Law
N ’ ~ 1 >
I:x ()__k(_xeq, U«/_Ek(_xeq/

e Taylor Series
o For agiven potential or force, find the 2"-order term in the Taylor Series and thus the
‘spring stiffness.’

o f(x)= f(x0)+2ﬁw

—~ dx"

(x=x,)"

XO
5.2 Simple Harmonic Motion

mx(t) = —kx(t)

Use Euler’s relations to move between these different representations
e =cos(wt)* isin(wr)

e The Exponential Solutions X(} ce +C,e™

e The Sine and Cosine Solutions x(¢)= B, cos(wr)+ B, sin(wr)

e  Phase-Shifted Cosine Solutions X € = Acos €t — 5:

e Solutions as the Real Part of a Complex Exponential x(t)z Re Ae' ™)

e Energy Considerations
5.3 Damped Oscillations

e Acos€t -6 _ under damped
K+2M+0ix=0 x,€=1e” (Clevﬂz'”g't +C,e V%) overdamped where @, = A~}
e/ @+Bt_ critically damped

5.4 2-D Oscillators
5.5 Driven Damped Oscillations
X+ 28K +w’x = f (: (in homogeneous)

e Linear Differential Operators: a linear combination of solutions is also a solutions,
e Particular and Homogeneous Solutions: x = x;, + X,
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e Complex Solutions for a Sinusoidal Driving Force

o X+2p+olx=fCwith f(t)=f, sin@,t xCG Asin@yt—5 ¥ x, C

f 2
A= ; S = arctar{%}
\/(’c?_a’ozj"‘ Q,Bij @o ~@p
e Resonance

2
_ 2 2 2 _ fo
O Mg =~O; —2B°, Amax =

ap* ;- B

e Width of the Resonance: the Q Factor o, = o, ¥

200
e The Phase of resonance & = tan™ %
o, —0p

0_

5.7 Fourier Series
F(ot)=> a, cos€at 3 b, sinot_
n=0
5.8 Fourier Series Solution for the Driven Oscillator

Aforce like F(ot) = a, cos€at 3 b, sin ot _
n=0

Gives rise to a solution like X(t) = x, (t) + Z @, cosQo t-5, ¥ A, sin€Qo,t-5,

n=0

5.9 RMS Displacement Parseval’s Theorem

Chapter 6 Calculus of Variations

6.1 Shortest Path and Fermat'’s Principle
S, X
S = [ds= [J1+ €'(x) Zdx
S Xy
SZJ ds 4 V1+ ¢'(x)° i

"y L wy)

6.2 Euler-Lagrange Equation
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S2
Generally, F = J.f (X, Y, y)dx is maximized, minimized, or stationary if

o _do _
oy dxoy

, of dof _
S = [f(r,¢(r),¢'(r)dr, o dr og’

6.3 Applications of the Euler-Lagrange Equation

Shortest path on sphere, on cylinder, minimum potential energy curve, minimum time path in
gravitational field.

Maximum and Minimum vs. Stationary

6.4 More than Two Variables

S= ”]~ f [x(u), () z(u)x'(u)y'(u)z'(u) u]du

To max/min-imize (or find stationary),

g .dg _, d.dT _, .

_ g_4q_,
G dudx' G dudx'

& dud'

Needn’t be Cartesian, for example,

Chapter 7 Lagrange’s Equations
7.1 Lagrange’s Equations for Unconstrained Motion

o Z=T-U
e Regardless of what coordinates we express it in terms of

o L=T(tq;(t),4;(t)...qy (1), dy (1) U (L, (1), 4 (1)....q (1), G (1))

o [£0t0,).9,0)...0y (1).4, (1)t

e Of course, that’s equivalent to saying that the Lagrangian satisfies the differential equations
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o 2—: - %S—i = 0 for all the individual coordinates.
e Several Unconstrained Particles
7.2 Constrained Systems; an example
At least one ‘degree of freedom’ can be rephrased in terms of another.
Spring-mass-pulley-hanging mass
Mass on parabolic wire
Mass on sphere
Pendulum hanging form cart
Bob hanging from orbiting disc
Double pendulum
Block sliding down slipping slope
Mass on spinning parabolic wire
7.3 Constrained Systems in General
e Degrees of Freedom

7.4 Proof of Lagrange’s Equations with Constraints

e The Action Integral is Stationary at the Right Path
e The Final Proof

7.5 Examples of Lagrange’s Equations
7.6 Generalized Momenta and Ignorable Coordinates
7.7 Conclusions

7.8 More about Conservation Laws



