
Phys 331:  10.3-.4  Rotating about any Axis, Inertia Tensor, Principle Axes 
 

 

10.3 Rotation about Any Axis; the Inertia Tensor: 

Suppose a body is spinning about an arbitrary axis (not necessarily z) through any point on the 

body. The body’s angular momentum relative to an origin on the axis is: 

L m r v m r r , 

where r  is the position of the mass m . Use the relation (note that both sides are vectors): 

A B C B A C C A B , 

or for a component ( i x, y, or z): 

A B C 
i

Bi A C Ci A B . 

Each term of the sum for L  involves a position r x,y,z  and the angular velocity 

x, y, z
. The x component of one term in the sum is: 

r r 
x x x2 y2 z2 x x x y y z z y2 z2

x xy y xz z
. 

Similarly, we get (check these for yourself): 

r r 
y

yx x x2 z2

y yz z, 

r r 
z

zx x zy y x2 y2

z
. 

The components of the angular momentum can be written as: 

Lx Ixx x Ixy y Ixz z , 

Ly Iyx x Iyy y Iyz z , 

Lz Izx x Izy y Izz z , 

where: 

Ixx m y2 z2 , 

Ixy Iyx m x y , 

and so on for the other I’s. Of course, these expressions can be turned into integrals for solid 

objects.  
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10.5-.6 Finding Principle Axes, Precession 

  

10.7-.8 Euler’s Equations 
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The I’s can be written as a 3  3 matrix called the inertia tensor (note the double arrow symbol): 

I 

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

. 

If we think of the angular momentum and angular velocity vectors as 3  1 matrices: 

L 

Lx

Ly

Lz

and

x

y

z

, 

then the relationship between the angular momentum and the angular velocity can be written 

compactly as: 

L I . 

There are only six elements of the moment of inertia to be calculated because: 

Iij I ji . 

The transpose of a matrix A, labeled ˜ A , is found by reflecting the matrix across its main 

diagonal (the elements Aii ). The inertia tensor is equal to its own transpose, I ˜ I , which means 

it is a symmetric matrix. 

 

Example #1: The four point masses below are connected by massless, rigid rods of length a. 

Find the inertia tensor using the axes shown (the z axis points out of the page). 
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In the sums below, the contribution from the upper left mass is first and the others follow in 

clockwise order. 
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, 

Ixz Izx m x z ma2 0 0 0 0, 

Iyz Izy m y z ma2 0 0 0 0. 

The inertia tensor is: 

I 

3 2 1 2 0

1 2 3 2 0

0 0 3

ma2 . 

 

Example #2: (Prob 10.25) Find the inertia tensor with respect to the CM of a uniform cuboid 

(a rectangular brick shape) whose sides are 2a, 2b, 2c in the x, y, and z directions and whose 

mass is M. 

 

 

The density of the cuboid is: 

 

M

2a 2b 2c

M

8abc
. 

Calculate the elements of the inertia tensor by dividing the cuboid into small pieces with 

dimensions dx, dy, and dz. The mass of each piece is  dx dy dz. The sums become integrals, 

so: 

dzdydxzyzymI

c

c

b

b

a

a

xx    
-

2222 , 

Ixx

M

8abc
2a y2 z2

b

b

c

c

 dy dz
M

4bc
2c y2dy

b

b

2b z2dz
c

c

, 

Ixx

M

4bc
2c

y 3

3
b

b

2b
z3

3
c

c

M

4bc

4cb3

3

4bc3

3
, 

Ixx
1
3

M b2 c2 . 

Similarly, the other diagonal terms are: 

Iyy
1
3

M a2 c2 and Izz
1
3

M a2 b2 . 
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The object has reflection symmetry across the z 0 plane, so the products of inertia 

involving z: 

0zxmII zxxz
, 

0zymII zyyz
, 

because for every mass at x,y,z  there is an equal mass at x,y, z . Similarly, the 

remaining products of inertia involving y, Ixy Iyx , are zero because there is reflection 

symmetry for the y 0 axis. The inertia tensor is: 

I 1
3

M

b2 c 2 0 0

0 a2 c 2 0

0 0 a2 b2

. 

Exercise: (Thornton 11-13) Find the inertia tensor for an object with: 

m1 3m at b,0,b , 

m2 4m at b,b, b , 

m3 2m at b,b,0 . 

Writing the contributions from the masses in the order given above: 

Ixx m y2 z2 mb2 3 0 1 4 1 1 2 1 0 13mb2, 

Iyy m x2 z2 mb2 3 1 1 4 1 1 2 1 0 16mb2 , 

Izz m x2 y2 mb2 3 1 0 4 1 1 2 1 1 15mb2, 

Ixy Iyx m x y mb2 3 1 0 4 1 1 2 1 1 2mb2 , 

Ixz Izx m x z mb2 3 1 1 4 1 1 2 1 0 mb2, 

Iyz Izy m y z mb2 3 0 1 4 1 1 2 1 0 4mb2 . 

The inertia tensor is: 

I 

13 2 1

2 16 4

1 4 15

mb2 . 
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10.4 Principal Axes of Inertia: 

While the inertia tensor is generally of the form 

     I 

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 

For some chosen set of coordinate axes, zyx ˆ,ˆ,ˆ ;  

Theorem - For any rigid body and any point O, there are three perpendicular principal axes 

through O. In other words, you can choose perpendicular axes so that the inertia tensor is 

diagonal. 

(We will not prove this!) 

We call this set of exes the principle axes of the object.  For obviously symmetric objects, it’s 

these are the obvious axes of symmetry.  But even for less obviously symmetric objects, a 

coordinate axis exists, call them 321
ˆ,ˆ,ˆ eee , so that expressed in terms of this set of axes (rather 

than an arbitrary x, y, and z), the inertia tensor is diagonal: 

Personally, I’d then write the inertia tensor as  

33

22

11

00

00

00

I

I

I

I


 

But the book uses  instead: 

I 

1 0 0

0 2 0

0 0 3

, 

 

For rotation purely about one of these axes, say 2ê  ,  then  0, ,0  
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That is to say, L  is parallel to  so: 


22IL , 

which is the very simple relation we’re familiar with from Phys 231 or even earlier in this 

course. 

Next time, we’ll learn how to find the principal axes. The next two times, we will also learn why 

principal axes are important (how they are used in calculations). 

 

 O 
x̂  
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