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Mon., 11/26 

Tues. 11/27 

Wed., 11/28 

Thurs. 11/29 

Fri., 11/30 

9.6-.7 Fictional Forces: Centrifugal & Coriolis 

 

9.8-.9 Free Fall & Coriolis, Foucault Pendulum 

  

10.1-.2  Center of Mass & Rotation about a Fixed Axis 

 

HW9b (9.14, 9.24) 

 

HW9c (9.25, 9.27) 

 

 

Equipment: 

 Globe 

 Ball with coordinate axes 

 Turntable with paper taped to it 

 

Non-inertial Frames: Rotating 

Last time we learned that when one frame is rotating relative to the other, say, the Earth, relative 

to the ‘fixed stars’, then velocity and acceleration measurements made in the two frames are 

related by  
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Of course, Newton’s 2
nd

 Law applies only in an inertial frame 
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Example: (Ex. 5.8 F&C) A rod of length L is rotating at a constant rate of  in a horizontal 

plane. A bead starts just off the axis of rotation, a distance Lo, at rest (with respect to the rod). 

Ignore friction. How long will it take the bead to reach the other end of the rod? 

 

 x

 y

 

 L
 

Use coordinates that rotate with the rod so that the x axis follows the rod, so the equation of 

motion is: 





 rmrmFrm 2 . 

The angular momentum is ˆ z . The bead is constrained to move along the x axis and the 

rod can only exert a normal force in the y direction since there is no friction, so: 
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xxmyxmzmgzNyNxxm zy
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The three component equations are: 

xmxm 2 , xmN y
2 ,  Nz mg. 

The second equation relates the size of the horizontal component of the normal force to the 

Coriolis force. The solution to the first equation is: 
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The initial conditions are oLx  and 0)0(x , so: 

0and BALBA o . 

The second is BA , so adding the conditions gives 2/oLA . The position is: 
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Let T be the time when the bead reaches the other end, so: 

TLLTx o cosh , 

oL

L
T 1cosh

1
, 

Note that the units are right because the angular velocity has units of radians (unitless) over 

time. 

 

Today and tomorrow, we’ll look at some effects of the centrifugal force: 

F cf m r , 

and the Coriolis force: 





rmF 2cor
. 

9.6  Centrifugal Force: 

Suppose a mass has a fixed position r  in a rotating coordinate system with angular velocity . 

What is the centrifugal force in this case? Label the angle between r  and  as . The diagram 

below will be helpful. 

 

  

 F cf m r   

   

 r   

 r   

 raxis=r sin  

 

The size of the first cross product is: 

r rsin . 
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It is tangent to the path of the mass (circle) as it rotates. The result is also perpendicular to the 

angular velocity: r . That means that the size of the centrifugal force is: 

Fcf m r m 2rsin . 

The centrifugal force F cf  is perpendicular to  and points away from the axis of rotation. 

Suppose we are describing an object near the surface of the earth. The size of the centrifugal 

force is larger near the equator. As described by an observer on the earth, the direction of the 

centrifugal force (how much N-S and how much In-Out) will depend on the location. We will 

use the angle  from the angular momentum (the North Pole). This is known as the colatitude 

and is 90  minus the latitude. See the diagram below. 

  mg o

 F cf

 radial

 (upward)

 tangential

 (horizontal)

 

 

From the perspective of someone rotating along with the rotating frame, there’s an effective 

gravitational force: 

cfgraveff.g FFF


. 

Define g o as the gravitational acceleration that would be felt if there was no rotation. We will 

now use "" g


 for the effective gravitational acceleration in the rotating frame. As the book points 

out, while we can conceptually distinguish the real gravitational from the centrifugal, we can’t 

experimentally distinguish them.  The individual and effective forces are shown below. 

 

The effective gravitational acceleration in the rotating frame is given by: 
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We can split this into radial / in-out and tangential components / 

north-south. The size of the radial component is: 
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(sign flip when dropping the absolute value signs since go will generally be larger than the 

centrifugal contribution) 

 

At the poles 0 or , grad go  and at the equator 2  it is less by: 

2
R 7.3 10

5
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The tangential component is: 

cossin
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2

tang
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Rg
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. 

The angle between g  and the radial direction ( g o ) is always small, so (in radians): 

tan
1 gtang

grad

gtang

grad

2Rsin cos
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. 

A plumb line (a bob on a string) will hang at this angle relative to g o // radially inward in 

equilibrium in the rotating frame. The angle is largest at 45  where: 

2R

2go

0.034 m/s2

2 9.8 m/s2
0.0017 rad 0.1 . 
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9.7 Coriolis Force: 

Let’s consider an object moving close to the surface of the earth. The Coriolis force depends on 

what direction an object is going (velocity) relative to the angular velocity. Note that what it 

means to go “north” depends on the location on earth! 
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Combining all of the pictures, we can explain why hurricanes tend to rotate counterclockwise in 

the Northern Hemisphere. If air is moving inward toward an area of low pressure, it is deflected 

by the Coriolis force in the way shown below (viewed from above). 

low

pressure

  

The opposite rotation results in the Southern Hemisphere. This effect is too small to determine 

the way water rotates as it flows down the drain (e.g. like when the Simpson’s visit Australia). 
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Both Forces: 

To get a little practice with a relatively simple situation, let’s consider the motion of a 

frictionless puck on a horizontal, rotating turntable. Compared to the spinning of the turntable on 

its own axis, the spinning of the room (sitting on the face of a spinning Earth) is negligible, so 

we’ll treat the room as an inertial frame.  Of course, in the inertial frame the puck will simply 

move in a straight line because there is no net force. A (noninertial) rotating observer may 

observe more complicated motions which will be explained by the centrifugal and the Coriolis 

forces. 

Example #: Prob. 9.20 (background for 9.24) Suppose a frictionless puck moves on a 

horizontal turntable rotating counterclockwise (viewed from above) at an angular speed . 

Write down the equations of motion for the puck in the rotating system if the puck starts at an 

initial position 0,ii xr


 with an initial velocity iii , yx vvv


 as measured in the rotating 

frame. Ignore Earth’s rotation! 

 

 

 

 

In an inertial frame there is no net force on the puck, so  

0netFrm o


 and we’d see the puck moving with constant velocity / in a straight line. 

How would it look to a little bug ridding on the turntable?  In that noninertial frame that 

rotates with the turntable, Newton’s second law is: 





 rmrmFFrm 2corcf
. 

Taking the angular velocity of the turntable to be 0,0, , the position is r x,y,0 . 

Calculate the cross products: 

I do:  r det

ˆ x ˆ y ˆ z 

0 0

x y 0

y, x,0 , 

They do:  r det

ˆ x ˆ y ˆ z 

y x 0

0 0

2x, 2y,0 , 

They do:  0,,
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So the equation of motion gives (dividing out the mass): 

0,2,20,,0,, 22 xyyxyx  , 

or the equations for the x and y components are: 

xyyyxx  2and2 22 . 

A trick for solving both of these coupled differential equations at the same time (see Sect. 

2.7) is to define x iy. If we add i times the y -equation to the x -equation, we get: 

yixiiyxyxiiyxyix  22 22 , 

 i22 . 

This looks an awful lot like the damped harmonic oscillator (aside from that factor of i and 

the lack of a negative sign on the linear term).  So we can guess the basic form of the solution 

that we’d guessed in that case. 

Since this is a linear, differential equation, guess the solution e i t , which gives the 

auxiliary equation: 

They do:    2 2 2 , 

2 2 2 2
0. 

This implies that . There is only one solution for , so we need a second solution (the 

differential equation is second order). This sounds a lot like the problem with the critically 

damped simple harmonic oscillator.  So we’ve got a good chance that a similar solution will 

work.  Just as with critical damping, you can check that in addition to e i t , te i t  is a 

solution, so the general solution is: 

t e i t C1 C2t , 

where the coefficients may be complex.  

 

Impose Initial Conditions  

0,0,ii xr


 and 0,, iii yx vvr


 or ii x  and iii yx ivv .  

The first condition implies that  

       i1 xC   

and the derivative is: 

ti

i

ti eCtCxeit 22
 , 

So the second condition implies: 

oo20 yxi ivvxiC , 

iyx xvivC ii2 . 
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This gives: 

txvitvxtittxvitvxet yxyx

ti

iiiiiiii sincos . 

The real part of  is x t  and the imaginary part is y t , which gives (Eq. 9.72): 

They do: ttxvttvxtx yx sincos iiii , 

ttxvttvxty yx sinsin iiii . 

You will explore (computationally) the behavior of the motion for different initial velocities 

in the homework (Prob. 9.24). 

 

 

 


