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Non-inertial Frames 

Say you go down to the Rose Parade and see a Pool-hall’s float go gliding by.  On that float, of 

course, they have a pool table and two people playing pool, let’s say I’m one of them.    

At some moment, relative to you, the front of the float has position, velocity, and acceleration 
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If you observe the cue ball, relative to you, you’d measure its position, velocity, and acceleration 

to be ,, oo rr 
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Of course, I, riding at the front of the float, would measure the ball’s position, velocity, and 

acceleration relative to myself as 
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Essentially what you measure, minus his own position, velocity, and acceleration. 

(note: this is the classical approximation, as is appropriate for this class; taking into consideration 

that folks moving at different speeds measure time and distance differently is the subject of 

special and general relativity) 

None of these are particularly remarkable kinematic observations; however, kinematics meets 

dynamics (interactions, pushes and pulls) in Newton’s 2
nd

 Law where force is related to 

acceleration, but only as measured in a non-accelerating frame. 
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So, for example, if you could measure all the forces on the cue ball, then you could use this to 

predict how it would accelerate relative to you on the curbside.   
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That means, it would accelerate away from the person riding the float as  
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Tada!  It’s that simple.  If so, then why on earth have we shied away from analyzing motion in 

non-inertial frames for so long?  Over the course of this chapter we’ll see that some situations are 

rather easy, while others are rather tricky. 

 

Fictitious Inertial / Frame Force 

If we multiply our acceleration relation by mass, of course we get 
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In the same spirit with which we’d defined a “centrifugal potential” and an “effective” potential 

in the last chapter, we could define a “frame force” and an “effective net force” here (indeed, 

centrifugal force is a “frame force” for a rotating system.) 
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In what sense is the frame (or, as the book calls it “inertial”, which seems a strange choice since 

it’s an artifact being in a non-inertial frame) force like and not like a ‘real’ force? 

Not a Force.  In physics, we defined ‘forces’ in order to quantify interactions – pulls and pushes.  

Mind you, this isn’t a ‘real’ force in the sense that two parties aren’t pulling or pushing on each 

other.  For example, when you hit the gas and your phone goes flying off the dash where you’d 

set it, it’s not because there’s an invisible hand pushing it back, rather, it’s because the dash 

accelerated out from under the phone. 
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That’s quite obvious to someone standing on the curb watching you zip by. 

Like a Force.  On the other hand, as measured by you who are accelerating along with the car, if 

you didn’t know any better (say you’re in the back of a windowless van), the phone flew back as 

if someone turned on a ‘tractor beam’ that pulled it. 
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So it moves relative to the accelerating frame as if there were this ‘frame force.’ 

Note: of course, you too move in the car as if experiencing a frame force – everything measured 

against the accelerating frame does (thus calling it a ‘frame’ force).  In your case, you and the 

seat press into each other as if the ‘tractor beam’ were pulling you back. 
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Frame Forces and Gravitation 

Better yet, it’s as if a gravitational field were pulling you back.  Like the real gravitational force, 

the apparent frame force is proportional to mass (that, of course, is the only way that you could 

explain why all things, in spite of having different masses, would accelerate the same in response 

to the force) 
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has the same form as the force due to a uniform gravitational field.  If you were in a plane in a 

cloud, the only sign you’d have that it was banking was that you felt ‘heavier.’  

 

 

 

 

 

 

 

 

 

 

 

 

 

General Relativity aside:  First Einstein had tackled the ‘special’ case of relating measurements 

in two coordinate systems that were moving relative to each other but not accelerating; that was 

‘special relativity.’  Then he wanted to develop the more ‘general’ relations between 

measurements made in two reference frames that were accelerating relative to each other; that 

was ‘general relativity.’  Why then do we associate ‘general relativity’ with the gravitational 

force?  Because Einstein made this observation – the effect of gravitation is ‘equivalent’ to that 

of an accelerating frame’s ‘frame force.’ 
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Steady State / Statics. 

Just like in Intro Physics, the easiest situations to which we can apply the force – acceleration 

relation is when there is no acceleration measured in the non-inertial frame.  

 

 

Example:  boxcar pendulum 

The book does this, but it’s got a high enough pay-off/effort ratio that it’s worth repeating. 

A railroad car with a pendulum hanging from its ceiling (length L, mass m) accelerates forward 

at Af.  Let’s say we know the mass of the ball and the acceleration of the car, then we want to 

solve for the force of the string and the angle at which the ball will hang. 
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Angle:  So, taking the ratio of the two equations tells us that 
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Magnitude:  Squaring and adding them gives 
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Effective gravitational force:  this is the same result we’d get if there were a gravitational force  
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Period:  While it isn’t really that much harder to find the pendulum’s frequency of oscillation 

about this angle than it is to find its period in an inertial (non-acclerating) frame,  

Question: If the pendulum weren’t in an accelerating box car, how would the frequency of its 

oscillation be related to g and L? 

A: 
L

g
 

Now, what’s our new effective geff?  And what’s the frequency we’d expect in the 

accelerating box car? 

We can skip to the result in this case, 
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Example: balloon. 

In problem 8.1, the book mentions a fun companion to this problem – a floating balloon.  At first 

blush, you might expect it to hang like 

 

 

 

  

But think for a minute about the forces that hold it in place.  There’s the gravitational force 

down, the ‘frame force’ back, the buoyant force…where does the buoyant force point? 

Recall that in a non-accelerating situation, buoyancy results from the fact that density and 

pressure of the air increases as you decrease elevation (since part of that pressure is the result of 

all the air above bearing down on you thanks to the gravitational pull down on it), so just below a 

balloon the pressure is slightly greater than just above – the difference between these two 

pressures gives a net force up / the opposite direction of gravitation. 

Now, in an accelerating box car there’s also a pressure difference left to right since the trailing 

wall is pushing into the air in front of it while the leading wall is pulling away from the air 

behind it.  In short, the air is also moving along with the accelerating reference frame, it also 

experiences an effective gravitational pull with feff Agg


 and so the buoyant effect is that 

pressure decreases as you move up and forward / the opposite direction of ‘gravitation.’ 

 

 

 

 

 

 

The balloon will lean forward! 

One way to think of this is that the balloon is like a bubble, or a lack of mass.  As all the mass in 

the air gets pushed down and left, that propagates the bubble up and right. 
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Example #1: Monkey & Hunter (the easy way!) A hunter shoots a bullet at a monkey in a 

tree holding a coconut. The initial velocity of the bullet is toward the monkey and coconut. 

At the instant the shot is fired, the monkey releases the coconut. Show that the bullet will hit 

the coconut. 

 

In the hunter’s (inertial) frame, F b mbg  for the bullet and F c mcg  for the coconut. We 

could show that if the initial velocity of the bullet is towards the coconut, they will collide as 

the coconut falls. However, this requires a bit of effort. 

Ignoring air resistance, the acceleration of the coconut is gA f


. In the coconut’s 

(noninertial) frame, we must include the inertial force gmAmF bfb
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f  in Newton’s 

second law for the bullet:  
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Therefore, if the bullet is initially going toward the origin of the coconut’s frame, it will 

continue to go toward it. 
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9.2 Tides. 

Now, there may be some cause for analyzing the motion of things in accelerating box cars, but 

by far the most commonly experienced accelerating reference frame is the Earth.  It’s spinning 

on its axis, it’s orbiting the sun.  It’s ever-so-slightly wobbling in response to the moon’s pull.  

We’ll go after this last effect first. 

 

Purely in terms of forces, the moon’s gravitational pull decreases as you get further from it.  That 

means that the near side of the Earth feels a greater gravitational pull than does the middle which 

feels a greater pull than does the far side.  Since water is much free-er to deform than is solid 

rock, the result is that the water near the moon moves toward it a little, the solid earth beneath 

moves toward it a little less, and the water on the far side moves toward it still less – thus, 

relative to the solid earth, the water bulges up on both the near and far side. 

 

 

 

 

 

 

Where 

Md

Md

m

Md r
r

mM
GF ˆ

2


  gmr

r

mM
GF Ed

Ed

E
Ed


ˆ

2
  ME

ME

ME
ME r

r

MM
GF ˆ

2


 

From an impartial, inertial observer’s perspective, Newton’s 2
nd

 law applied to the water droplet 

is 
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Now you, riding on the Earth as you are, are not an impartial inertial observer.  For the sake of 

this analysis, we’ll just worry about how you and the Earth that you’re riding accelerate toward 

the moon in response to its gravitational force, in particular,  
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So, looked at from your non-inertial perspective, 
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So the ‘tidal’ effect is due to that difference between what the moon’s gravitational force on the 

water droplet is and what it would be if the droplet were at same location as the center of the 

Earth. 

  

 

 

 

 

 

 

 

 

 

So, water near the moon gets pulled out, water far from the moon gets pushed out, and water half 

way between gets pushed inward. 

Exercise: Find an approximate expression for the tidal force on a drop at the point nearest the 

moon (can use that RdE<<RdM and a binomial expansion) 

At this point, all forces are along the x-axis, and RdM= RME - RE . 
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Magnitude of Tides 

In equilibrium, 

0amFgmF buoytidal
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Now, the buoyant force of water on a droplet at the surface of the water is essentially a normal 

force – preventing the droplet from sinking.  That means that the other two forces must, in 

equilibrium point normally into the surface of the water. 

 

Now, if gmFtidal
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 is normal to the water surface, then if we imagine grabbing a droplet and 

dragging it along the surface, these two forces must do no work / constitute no change in their 

associated potential energy.  So, if we consider the potential energies associated with then forces, 

then we can say the total potential at one location is equal to that at another.  That will allow us 

to evaluate their elevations. 

 We can rewrite the forces as 
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so, this must be constant at any two points on the water’s surface, let’s compare the high and low 

tide spots: 
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Where 
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Or to a pretty good approximation, 
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Now, we could calculate at this point, but we could also simplify making use of the fact that rME 

>>RE, and then do a binomial expansion on the two fractions. 

Giving that, 

 

h
r

R

M

M
R

h
r

R

r

R

r

R

r

R

r

R

M

M

h
r

R

r

R

rr

R

r

R

rRGM

GM

h
r

R

r

R

rr

R

rg

GM

ME

E

E

m

E

ME

E

ME

E

ME

E

ME

E

ME

E

E

m

ME

E

ME

E

MEME

E

ME

E

MEEE

m

ME

E

ME

E

MEME

E

ME

m

3

2
3

2

2
1

22

2

2

2
1

2

2

2

2/1
21

1
1

1
1

/

1
1

1
1

 

The book calculates this to be about 54cm. 

 

Performing the same analysis for the sun’s effect would go exactly the same; given that the sun 

is much further away, but also much more massive than the moon, you get a contribution of 

another 25cm.  

 


