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Review/Summary: 

Key Equations 
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All of the “Kepler orbits” are described by 



r  
c

1 cos 
. 

Eccentricity Energy Shape of Orbit 



  0  



E  0  circle 



0  1 



E  0  ellipse 



 1 



E  0  parabola 



 1 



E  0  hyperbola 

These are all “conic sections” – they are shapes that you get when you slice a cone different 

ways. The four different types of orbits are shown below (



 0 is horizontal to the right). 

 

Wed., 11/17 

Thurs. 11/18 

Fri., 11/19 

8.6-8 Unbounded and Changing Orbits 

 

9.1-.3 Noninertial Frames: Acceleration, Tides, Angular Velocity 

Ch 6 30-min test 

 

Ch 7 30-min test 

Mon., 11/22 

Tues.,11/23 

9.4-.5 Noninertial Frames: Time derivatives, Newton‟s 2nd.   

 

Ch 5 30-min test 

HW8 



  2 

In the equation 



r  
c

1 cos 
: 



c 
2


, 



 Gm1m2
, and 



 
m1m2

m1  m2

. 

How can you find 



 and ? 

1. Total angular momentum ( rr 
  ) is easiest to find when rr 

 .  

 Where does that occur? 

Point of closest approach (perigee) or farthest point (apogee) – the latter only exists 

for bounded orbits. 

 What is the value of 



 at these points? 

Only at these points: 



rv , where rv   is the speed of one object relative to the 

other. At other points on the orbit, it would be much more difficult to determine the 

angle between 



r  and r


. 

2. How can you find the eccentricity  (after finding c)? 

Need to know the separation r at any angle . It is particularly easy to use the perigee 

or apogee beacuase: 



rmin  c 1   and 



rmax  c 1  
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Changes of Orbit: 

The most general form of the equation of orbit is: 



r1  
c1

1 1 cos  1 
. 

The total energy 



E1, angular momentum 



1, and the angle of the perigee can be used to 

determine the parameters 



c1, 



1, and 



1. A brief impulse of the appropriate size and in the 

appropriate direction at angle 



o  can put the object into any orbit that crosses the original one (as 

shown below for bound orbits). 

 impulse
 

The values of the energy 



E2 and angular momentum 



2  after the impulse can be calculated. 

Those determine the values of 



c2 and 



2  for the new orbit. The condition 



r1 o  r2 o  
determines the value of 



2 . This general case is somewhat complicated. 

We will treat the special case of an impulse tangential to the orbit at the perigee (closest 

approach) of the initial elliptical orbit. This doesn‟t change the direction of the velocity 

(tangential) at the point of the impulse, so this point will be the perigee (or apogee) the new orbit. 

If we choose the axes so that 



1  0, then the impulse occurs at 



o  0. For the new orbit, 



2  0, 

so there are two parameters to determine. Since the orbits must meet at 



o  0: 



c1

11


c2

12

. 

At perigee (or apogee), the size of the angular momentum is simply: 



rv , 

because the velocity is tangential (perpendicular to 



r ). Suppose the relationship between the 

speed of the satellite just before and just after the impulse (rocket firing) is: 



v2  v1, 

where  is called the thrust factor. If 



 1, then the thrust is forward and the final speed is 

larger. If 



 1, then the thrust is backward and the final speed is smaller. The angular 

momentum changes by the same factor as the speed, so: 



2   1. 
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The parameter c is given by: 



c 
2


, 

so the initial and final parameters are related by: 



c2  
2c1. 

Substituting this into the other relation for the orbits gives 



c1

11


c2

12


2c1 

12

, 



12  
2 11 , 



2  
21  2 1 . 

Case 1: 



 1, so there is a forward thrust 

This will result in an increased eccentricity, 



2 1. 

If  is large enough, the final orbit will have 



2 1 and it will be unbounded. 

Case 2: 



 1, so there is a backward thrust 

This will result in a decreased eccentricity, 



2 1. 

If  is small enough, the final orbit will have 



2  0, which means that the perigee of the 

initial orbit is the apogee of the final orbit. 

 

Example: (Prob. 8.34) A spacecraft starts in an orbit around the sun close to the earth (radius 

of 



R1 1 AU , astronomical units). It is going to given a thrust to make it reach the orbit of 

Neptune (radius of about 



R2  30 AU) at its apogee. (a) What is the required thrust factor? 

(b) How long will the spacecraft take to reach the apogee? (c) What second thrust factor will 

put the spacecraft into the same circular orbit as Neptune? 

(a) The initial orbit is circular so 



1  0 and 



c1  R1. The final orbit must be at a distance of 



R2  at the apogee of the second orbit, so: 



R2 
c2

12

. 

After the first thrust, 



c2  
2c1 and 



2  
21  2 1 , so: 



R2 
2c1 

1 2
1  2 1  


2R1

2  2
, 



22 R2  
2R1, 



2 R1  R2  2R2, 
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

 
2R2

R1  R2


2 30 AU 

1 AU  30 AU
1.39 . 

(b) The orbits are shown below. 

 



R1
 



R2

 

The semimajor axis of the transfer orbit (ellipse) is: 



a 
R1  R2

2


1 AU  30 AU

2
15.5 AU. 

The period of the initial orbit is 



1 1 yr, like the earth. According to Kepler‟s third law: 



 2 
4 2

GMs









a

3 , 

so: 



1

2

 2

2


a1

3

a2

3
, 



 2  1

a2

a1











3 2

 1 yr 
15.5 AU

1 AU











3 2

 61 yr . 

(c) The second thrust occurs at the apogee of the transfer orbit (2), so continuity gives: 



c2

12


c3

13

. 

Since the final orbit is circular, 



3  0 and 



c3  R2, so: 



c2

12

 R2. 

After the second thrust, 



c3  R2  2

2c2, so 



c2  R2 2

2  and: 



R2 2

2 
12

 R2 , 



1

12

 2

2 . 
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We already know that: 



2  
21  2 1  2 1 

so: 



2

2 
1

1 2 1 


1

2  2
. 

We also know that: 



2 
2R2

R1  R2

, 

so: 



2

2 
1

2
2R2

R1  R2












1

2 R1  R2  2R2

R1  R2


R1  R2

2R1

. 

This is just the inverse of what we found in part (a) with the initial and final radii switched: 



2 
R1  R2

2R1


1 AU  30 AU

2 1 AU 
 3.94 . 

 

 

Homework Hints 

Problem 25 part b: google „root find‟ and you‟ll get an app that will find the roots of this; you 

only want the real ones. 

Part c: in Vpython, 

 

Start with some initial conditions 

r  = rmin 

f = 0 

Ball.pos = vector (r*cos(f), r*sin(f),0) 

u = 1/r 

u‟ = 0 (since, right when r = rmin the radius momentarily stops shrinking, and so u stops 

growing) 

in the loop  

while f < 7*pi: 

u” = …. 

u‟ = u „ + u”* delta_f 
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u = u + u‟ * delta_f 

r = 1/u 

f  = f + delta_f 

Ball.pos = vector (r*cos(f), r*sin(f),0) 

 

 


