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Note: at any given moment, these two vectors are in a plane, we’ll define the direction that’s 

perpendicular to the two as the z direction. 

With no external torques applied to the system, this angular momentum vector must be constant 

in both magnitude,  2r  , and direction. 

2r

  

At any given moment, these two vectors, or in terms of cylindrical polar coordinates (since this is 

a 2-D problem): 
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Where  
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Looking just at the energy associated with relative motion & position, i.e., looking in the center-

of-mass frame,  
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 If E 0 and E Ueff min
, there are two turning points, rmin  and rmax, so the motion is 

bounded.  

 If the energy is equal to the minimum value of Ueff , then 0r  and the radius is constant. 

That means the orbit is circular. 

 If E 0, there is just one turning point, rmin, so the object can move off to infinity. The 

orbit is unbounded in this case. 

Mind you, we’re only plotting the energy vs. r .  It may be useful to visualize the potential 

well in the full x-y plane (conveniently, that’s where all the action is). It looks like a flaired 

bunt cake form, where the vertical axis represents energy. 
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A comet with E<0 would be bound – having minimum and maximum radii where the constant-

energy plane hits the outer and inner wall of the potential form. 

 

A comet with E>0 would be unbound – having a minimum, but no maximum radius. 

 

Using the Lagrangian approach, we can say that  
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 Of course, if we’re talking about a central force, then the radial component is the only 

component, so I might as well drop the subscript. 
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Now, that’s as general as I can keep it.  If you know an expression for the force, then plug it in 

and you’ve got an expression for finding how r varies with time.  Maybe you can solve this 
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expression for an analytical function r(t), or maybe you just use this in an Euler-Cromer 

computational approach. 

Of course, once you’ve got either an expression or a value for r, you can use 

2r

  

to update to find the corresponding angle. 

 

Demo: orbit (for a crazy central force, F= - kr
-5/2 

) 

 

This time 

Equation of Orbit: 

When we think of an orbit we think of the geometric pattern that a planet or whatever traces 

through space – not so much where is the planet at what time (which the above equation can help 

us find), but what’s equation of the whole path.  So we want to rephrase how r and how   varies 

with time as how r varies with  . 

The first step is:   

d
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If this seems like mathematical magic, think of this example – say a bug is walking radially 

outward on a spinning record.  The record goes around once every 2 seconds and the bug walks 

out 3 cm each time it goes around, then at what rate is the bug walking out? 
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That’s the logic we’re using above. 

 

Okay, so it makes sense, but is it any use, aren’t we just trading one time derivative for another? 

Yes, but… since angular momentum is constant, we can rephrase the angular time derivative as 
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So, 
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Which may be uglier than what we started with, but it no longer has explicit time dependence. 

So we can now rephrase 
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Now, if you note that  
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It’s appealing to define u = 1/r.  That lets us write all this as  
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(indicating upon what things depend) 

This is the differential equation for any central force, if 0 (can’t divide by it in that case, then 

again, =constant, so there’s no way to parameterize u in terms of ). 

The equation of orbit is solved for u  which is inverted to get r . The solution can be 

transformed to Cartesian coordinates (x and y) to see what kind of function it is (we’re more 

familiar with ellipses, parabolas, and hyperbolas in that form). 
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Example: spring force. 
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Kepler Orbits: 

It so happens that the math is simpler for our favorite force, ~1/r
2
, as in  
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oelect  when charges of opposite sign interact or 
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mm
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To remain somewhat general, we’ll just say we’re concerned with a force of the form 

F r
r2

or F u u2 , 

where Gm1m2
 for gravitation or 

214
1 qq

o
 for electric.  

 

Now, the equation of orbit is: 

u u 2 . 

Or 

     
2uu  

This has the exact same form as the equation for a simple harmonic oscillator with an offset. 

2cos Au  

Solves it. 

 

You can deduce that by saying we could guess a homogeneous solution (what the solution would 

be if the right hand side were 0), and then add it to a particular solution (one that gives us the 

right-hand-side).  The homogeneous solution is the familiar 

cosAuh  

Then adding on the constant as the particular solution 

2pu  

So 
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2cos Au

uuu ph
  

 

Let’s choose to define our coordinate system oriented such that 2)0( Au  

That’s u’s maximal value, or 1/u = r’s minimal value. 

22cos0  AAu  meaning that 0 . 
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If we define 2c  the eccentricity AcA 2  (a dimensionless constant), and then 

the solution is: 

u
1
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1 cos

c
, 

so: 
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c
r . 

 

 

 

 

 

 

 

 

This is the general solution for the relative position in the gravitational, two-body problem. There 

are two coefficients which depend upon the particulars of the orbit – c can be phrased as 

depending upon the angular momentum (or vice versa) while  also depends upon the 

‘amplitude’, A.  

We traded two 2
nd

-order differential equations (with respect to time) for one 2
nd

-order equation 

in terms of angle which gave really two distinct constants (taking l as a given): A and , but we 

were free to define our coordinate system such that 0 . 

The type of curve that it describes depends on the value of . The two cases to consider are: 

x 

y 

r 

rmin=c/(1+ ) 

c 

rmax = c/(1- ) 

Perihelion (pari-near helios – sun) aphelion  
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1. 1: The denominator of r  never vanishes, so r  is bounded. It has a finite 

maximum radial distance. 

2. 1: The denominator of r  vanishes (the whole thing blows up) for some angle, so 

r  is unbounded. The radial distance approaches infinity as  approaches this angle. 

 

Energy – eccentricity relation 

This is the same distinction that we saw between the cases E 0 and E 0 when we discussed 

the effective potential.  Indeed, we can relate the two: 

Returning to our energy plot,  

 

 

at its distance of closest approach rmin , the orbiting object’s energy is equal to the effective 

potential energy Uefffor that separation. That means: 
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The minimum radial distance is when cosine = 1, so: 
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The relationship between energy and eccentricity is E 0 if 1 (bound) and E 0 if 1 

(unbound). 

Bounded Orbits:  Kepler’s 1
st
 law 

If 1, the denominator of the following never vanishes: 

r
c

1 cos
, 
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so the minimum distance (perihelion around sun or perigee in general) is: 

rmin r 0
c

1
, 

and the maximum distance (aphelion around the sun or apogee in general) is: 

rmax r
c

1
. 

Example (Prob. 8.16) We want to show Kepler’s first law – bounded orbits are ellipses. First, 

we need to know what equation describes an ellipse.  

For a circle centered on the origin, 1
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For an elipse, An ellipse centered on the origin 1

22
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. Essentially the two axes are 

scaled differently.   

 

Obviously, when x = 0,   

by

b

y
1

2

2

 are the two extreme values of y; similarly, when y = 0, 
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a
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are the two extreme values of x. 

If a > b, then we’d say a is the “semi-major” axis (semi – half, major – larger) and b is the “semi-

minor” axis. 

   

An ellipse shifted in the x direction (see the diagram below), is described by: 

x d
2

a2

y 2

b2
1. 
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Now, when y = 0, this gives  
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So the full range of x is still 2a wide, and a is still the “Semimajor axis.” 

 

Now, let’s see if we can massage our orbital equation into this form.   

 

 

 

 

 

 

 

Multiplying both sides of the equation of orbit by 1 cos  gives: 
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, 
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, 

since x rcos .  

      r c x  

Of course,  222 yxr , so let’s square both sides and then replace r
2
. 

Square both sides:   222222 2 xxccryx , 

1 2 x2 2c x y2 c2 . 

Divide both sides by 1 2  and define d c 1 2  to get: 

x2 2d x
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, 

and add d2 to both sides to complete the square (in the brackets): 
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Perihelion (pari-near helios – sun) aphelion  
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Define a c 1 2  and divide by a2 to get: 

x d
2
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y 2

a2 1 2
1. 

If we define b a 1 2 , then: 

x d
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where: 

a
c

1 2
, b

c

1 2
, and d a

c

1 2
. 

Again, the distance a is called the semimajor axis and b is called the semiminor axis. The ratio of 

the lengths of the axes is: 

b

a
1 2 . 

For bounded orbits, the parameter  is called the eccentricity, as you can now see, it’s a measure 

of how mismatched the two axes are.  If 0 , then a=b and orbit is just as tall as it is wide; it’s a 

circle. As 1, the ellipse becomes thin and elongated. The two-body system’s center of mass 

is at one focus of the ellipse (for most practical purposes, that’s the sun). 

 

Kepler’s Laws 

We have already shown (Ch. 3) Kepler’s second law – the rate at which a line from the sun a 

planet (or comet) sweeps out area A at a constant rate. 

From geometry (which we reasoned through in Chapter 3), the area of the differentially thing 

triangle illustrated below is half that of the parallelogram shown, which itself is simply the cross 

of its two sides. 
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So, the rate with which the area is being swept through is  
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Finally, we would like to derive Kepler’s third law, which says that the square of the period of an 

elliptical orbit is proportional to the cube of the semimajor axis.  

The area of an ellipse is A ab  (it is a “circle with one dimension stretched”). If the period of 

an orbit is , then the rate of sweeping out area is: 

ab

2
, 

so: 

2 ab
. 

From earlier, we know that b a 1 2 . Squaring both sides and substituting in for b gives: 

2
4 2a4 1 2 2

2
, 

but c a 1 2  and c 2  so: 

2 4 2c 2

2
a3 4 2

a3 . 

Now, this much is true for an orbit under the influence of any -1/r
2
 force.   

Now we’ll get specific to a gravitational one with a planet around a much more massive star. 

Since the mass of the sun m2 Ms is large compared to the mass of orbiting bodies, we can 

approximate the total mass for the system is M m1 m2 Ms and the reduced mass is 

m1m2 M m1. That means that Gm1m2 G M  and (dropping the approximation symbol 

because this is a very good approximation): 

3
2

2 4
a

GM s

. 

 

 


