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8.3-.4 Equations of Motion for 2-Body Central Force 

 
 
 
 

From the get-go, the book considers just a two body system; I want to put this in context of 

things we’ve done before in this class and 231 with multi-body systems.  So I’ll start general, and 

then take it down a notch to just two bodies. 

Let’s recall how we can dived up the energy of a system. 

When you’ve got a multi-particle system, the total energy of the system is the sum of the kinetic 

energies of each particle and the potential energies of their shared interactions. 
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, that red dot would respond to the external forces just like a single particle with 

the whole system’s mass: cmtotaltotal RMP
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. 

 

For that reason, when you’re considering the total energy in a compound system, it’s often 

convenient to break it up into the center of mass’s kinetic energy, and the rest, the “internal” 

energy, or the energy ‘relative to the center of mass.’ 
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 (if you derive this relationship, it’s not immediately apparent, but the 

cross-terms do indeed end up summing to 0.) 

For example, when a ball goes flying through the air, you can track the center-of-mass motion, 

but, on the atomic scale, there’s also a lot of jiggling and bonds that hold it together, or when you 

look at a distant star system, may be all that you can resolve is the ‘net’ motion of the system, the 

kinetic energy of the center of mass, but maybe there are a few stars and planets that make up 
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that system and there’s energy associated with their gravitational interactions and their motions 

relative to the center of mass. 

Okay, now down to n=2 

Of course, the simplest ‘compound’ system is one of just two particles.  In that case, our sums 

reduce to 
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Or, in terms of center of mass, and relative motions, 
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If we define 2112 rrr
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, then we can write these two relative positions as simply  
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So, 
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So, if we define 
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We can write the system’s energy in short-hand as  
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Better yet, the simplest, fundamental potential energies for two interacting particles are 

gravitational 
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The textbook (at least the 1
st
 printing) does not seem to give the gravitational constant, 

G 6.67 10 11 m3 /kg s2 . It is not needed for some calculations, but it is useful or necessary for 

others. 

And the electric potential 
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Notice that both only depend upon the separation, not the absolute positions of the two 

interacting particles. 

We can describe a two-body system with either the Lagrangian approach or Newton’s second 

law. We will use a little bit of each. 

 

Of course, the Lagrangian is 
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Notice that there are only two degrees of freedom: the position of the center of mass and the 

separation of the two objects from each other. 

One way of conceptually subdividing this is 

relcmrUrRMUT LLL
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There are no mixed terms, so there will be independent equations of motion for R  and r  just as 

if they described two non-interacting systems. 

The Lagrangian for the CM is like that of a free particle (no force or potential) of mass M. In the 

first term,  

2222
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. 

The coordinates Rx, Ry, and Rz  are ignorable (not present in L), so the equations for the center of 

mass motion are: 

constantandconstantconstant zyx RMRMRM  , 

or the total momentum of the system is constant: 

(vector)constant RMP


. 

The Lagrangian for the relative motion is like that of a particle of mass  moving in a potential 

U r .  

Example: 8.2 

What if there is an external agent acting upon this system, for example, say we have two masses 

interacting with each other (say joined by a spring) near the surface of the earth (i.e., where a 

particle-earth potential energy is mgy.)  Then everything plays out as said, but with an addition 

to the potential energy. 
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For this reason, the “center of Mass” is also known as the “center of gravity” since a body 

responds to a uniform gravitational field like a single particle with all the mass at this point. 

Then the lagrangian would be 
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Since there are no cross terms, one can easily group the center-of-mass and the separation terms 

and refer to them separately as the center-of-masse’s Lagrangian and the separation’ lagrangian. 
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Solve Center of Mass problem 

It’s really easy to get the equations of motion of the center of mass from subjecting CML to  
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Solve the separation problem 

Let’s say that what we’ve got are two masses joined by a spring. 

So, what if the potential were a spring potential? What would the lagrangian’s look like and what 

would be the equations of motion for the separation? 
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Note that 2

2
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isn’t as simple as it looks – there are three coordinates: 
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Since the spring potential only depends on the spring’s stretch, Spherical coordinates seem the 

natural ones to choose.   

2

2
1222222

2
12

2,12
1

12
2

2
1 )(sin)( ooseparation rrkrrrrrkr L  



  6 

rrrkrr
rdt

d

r

r
dt

d

dt

d

rrrr
dt

d
r

dt

d

o

separationseparation

separationseparation

separationseparation










)(sin

sin0

2cossin2

222

22

2222

LL

LL

LL

 

 

Now, let’s define the direction that the spring is initially pointing to be z, that is o=0, o=90°,.   

Then we have that  
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And the only way for that to be true as r and q may evolve is if  
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Nest time, we’ll consider systems that actually are rotating, for now, if we’ve got the simple case 

that it wasn’t originally rotating, then we see that it won’t start rotating spontaneously, and 

we’ve got simply 
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We can get the same result starting from Newton’s laws. We already know that if there is no net 

external force on a system, its center of mass moves with a constant velocity. To simplify the 

analysis, we can choose the center of mass as the origin of an inertial reference frame so that (see 

the diagram below): 

R 0 and m1r 1 m2r 2 0. 
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 r 

 CM

 

The force on particle 1 will depend on its position relative to particle 2 (see the diagram above) 

which can be written as (only if CM is the origin, use the second equation above): 



  7 

r r 1 r 2 r 1
m1

m2

r 1
m1 m2

m2

r 1 . 

Suppose that we want to describe the motion of particle 1. The size of the force depends on the 

size of the separation and is along r , so its equation of motion is: 
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where f r  is the magnitude of the force. Substitute in r 1
m2

m1 m2

r  to get a description of the 

motion of particle 1 relative to particle 2: 
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In other words, we can solve for the position of particle 1 relative to particle 2 as if particle 2 is 

not moving if we use the reduced mass for particle 1. 

 

  


