
Phys 331: Ch 7, .2 More practice with Unconstrained Lagrange’s Equations  1 

 

Wed., 10/31 

Thurs. 11/1 

Fri., 11/2 

7.6-.8 Generalized Variables & Classical Hamiltonian 

                                   (Recommend 7.9 if you’ve had Phys 332)  

8.1-.2 2-Body Central Forces, Relative Coordinates. 

 

HW7c (7.”53”, 7.”54”) Project Outline 

  

Mon. 11/5 

Wed., 11/7 
Review  

Exam 2 (Ch 5-7) 
 
 

 

 

 

Today , we’ll work some more examples, but first we’ll look at two very important ideas 

Conservation Laws and Noether’s theorem 

Hamilton’s Equation. 

Admittedly, we’re not going to do much with these, but the first is interesting in its own right and 

the second gets a lot of play in Quantum. 

 

Conservation of Momentum and Translational Invariance 

Imagine you’re watching something play out, I don’t know, bodies gravitationally interacting.  In 

order to get quantitative about modeling what you see, the first thing you do is define a 

coordinate system.  Then you can specify the positions and motions of the particles relative to 

that origin and the coordinate directions. 

 

 

 

 

 

 

 

Now, the kinetic energy of the system depends upon the speeds and the potential energy of an 

isolated system depends on the relative separation of the particles. 
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Then again, you could have chosen a different location for your origin, and that wouldn’t change 

very much about your description of the system’s behavior – the two gravitationally-interacting 

objects would still be just as far apart from each other and they’d have the same velocities, 

they’d just have different locations relative to the origin. 
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So, 
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Obviously then  
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Considering a displacement just in one direction at a time, x for instance, 
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Using the fact that 
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We have that 
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So the total momentum is conserved. 

So, that a system’s momentum is conserved (no net external force) is equivalent to saying that 

the lagrangian is unaffected by translations through space. 

 

An obvious counter example is when something is acted upon the gravitational force of the 

Earth, and we take the Earth to be outside the system. 

Rotation and Angular Momentum.  We could of course make a similar argument about 

rotating from one frame to another.  The Lagrangian’s being unaffected by this is equivalent to 

what being conserved?  Angular momentum.  To show this, all you really have to do is replace x 

with , and redo the work above. 
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Translation through time. 

Now, is there anything special if the lagrangian doesn’t change with time? 

Let’s look at the time derivative of the lagrangian. 
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The reason I write it out this way is so we can recognize the product rule in action.   
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Now, if our coordinates are Cartesian, then   

1

1
q

p


L
 

Or, as the book suggests, more generally we can talk about this derivative as a “generalized” 

momentum.  For example, if q is an angle then p is the angular momentum. 

So, using that shorthand, we have 
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Rephrased, we have 
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This doesn’t look too incredible all by itself, but if the Lagrangian doesn’t have any explicit time 

dependence (recall, none of the examples we’ve considered have had any), then the right-hand 

side is zero, meaning the argument must have no (explicit or otherwise) time dependence – it’s a 

constant and conserved quantity. 
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So in those cases we have a conserved quantity, and that quantity is called… 

LH
i

ii pq  

The Hamiltonian. 

 

Clearly, if we’re dealing in Cartesian coordinates, the q’s are x,y,z for the different particles and 

the p’s are px, py, pz., then 
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The book proves more generally that, as long as your generalized coordinate system is not 

changing with respect to Cartesian coordinates, then you get this.   

 

You may well wonder what’s so significant about the Hamiltonian if it just total energy?  For 

that matter, you could have asked ‘what’s so significant about the Lagrangian if it’s just the 

difference between kinetic and potential energy.’  The significance is not the thing itself, but 

what we can do with it.  The Lagrangian satisfies 

ii qdt

d

q 

LL
 

The Hamiltonian satisfies  
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Sometimes this pair of simpler equations are easier to work with than Lagrange’s equation. 
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Examples 

Okay, time for more work on the examples we’d begun last time. 

Practice with Constrained systems. 

Now, we’ll continue getting more practice.  First, I’ll give the set up for a handful of problems, 

and then I’ll give the solutions, so you can try working them yourself, but also peak at the 

solutions.  

 

Here’s a real classic:  suppose a string of length s connects a puck of mass m1 on a frictionless 

table and an object with mass m2 through a hole (see the figure below).  
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(a) Write the Lagrangian for the system in terms of the puck’s polar coordinates. 

 (b) Find the equations of motion for the system. 

 

 (Book does Ex. 7.5.) A small block is sliding along a plane that can slide without friction. The 

coordinate q1 is clearly not a Cartesian coordinate. 
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Exercise #5: (book sets up but doesn’t do) Suppose a double pendulum consists of two rigid, 

massless rods connecting two masses. The masses are not equal, but the lengths of the rods are. 

The pendulum only swings in one vertical plane. 

 

  m2

 m1

 

 

 

(a) Write the Lagrangian for the system in terms of the angles shown above. 

 (b) Find the equations of motion of the system. 

 

 (Ex. 10.9 of F&C 5
th

 ed.) Spherical pendulum – Find the equations of motion using spherical 

polar coordinates. Note that the length is fixed.  This is the same problem as we worked when the 

ball was confined to the surface of a sphere except now we define z down in the direction of the 

gravitational force. 
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Example #2: (Ex. 7.7 of Thornton) Frictionless bead on a spinning parabolic wire z cr
2
 

rotating with an angular velocity  . What is the condition on the angular frequency to get 

the bead to rotate at a fixed location on the wire? 

 

 

 

 

 

 

 

 

 

 

z 

r 



  7 

Solutions 

Here’s a real classic:  suppose a string of length s connects a puck of mass m1 on a frictionless 

table and an object with mass m2 through a hole (see the figure below).  

 
 r

 s -r

 m1

 m2

 

(a) Write the Lagrangian for the system in terms of the puck’s polar coordinates. 

The kinetic energy for the puck is: 

222

12
1

1
 rrmT , 

and for the other mass is: 

2

22
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1

2 rmrmT  . 

define the gravitational potential energy to be zero at the level of the table, so: 

U m2g s r . 

The Lagrangian is: 
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(b) Find the equations of motion for the system. 
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The second equation is equivalent to conservation of angular momentum. The first equation can 

be rewritten as: 

gm
rm

rmm 23

1

2

21


 . 

Look at some Qualitative cases:  

 Whether the radius grows or shrinks depends on whether the orbital term is greater or less 

than the gravitational term.  The balancing point, where there is no radial acceleration is when 
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It may not look too familiar in that form, but rephrasing it as 
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May look familiar – when the radial force experienced by m1 is equal to mv
2
/r, the thing executes 

a circular orbit, so r = constant. 

 

 

 

 (Book does Ex. 7.5.) A small block is sliding along a plane that can slide without friction. The 

coordinate q1 is clearly not a Cartesian coordinate. 
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The velocity of the block relative to the ground (inertial frame) is the velocity of the plane plus 

the velocity of the block relative to the plane (see the diagram below). 
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By the law of cosines, the size of the block’s speed squared is: 
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Alternatively, one can break it down this way and get the same result: 
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The kinetic energy of the system is: 

cos2 21
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and the potential energy is: 

U mgq1sin . 

The Lagrangian is: 
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The equations of motion are: 
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The first equation gives: 
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m
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These equations can be solved (you can check the algebra) for 1q  and 2q  to get: 
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The right hand sides of these equations are constant, so these are easy to solve. The acceleration 

1q  of the block relative to the plane and the acceleration 2q  of the plane are constant. Try getting 

these equations using Newton’s second law! 

 

Exercise #5: (book sets up but doesn’t do) Suppose a double pendulum consists of two rigid, 

massless rods connecting two masses. The masses are not equal, but the lengths of the rods are. 

The pendulum only swings in one vertical plane. 

 

  m2

 m1

 

 

 

(a) Write the Lagrangian for the system in terms of the angles shown above. 
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Take the top pivot point as the origin and choose positive x to the right and positive y upward. 

The components of the position of m1 are: 

x1 sin and y1 cos , 

so the components of its velocity are, 

sinandcos 11
 yx . 

The components of the position of m2 are: 

x2 sin sin and y2 cos cos , 

x2 sin sin and y2 cos cos , 

so the components of its velocity are, 

sinsinandcoscos 22
 yx . 

The kinetic energy is: 
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The potential energy is: 

U m1gy1 m2gy2, 

U m1 m2 g cos m2g cos , 

so the Lagrangian is: 
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(b) Find the equations of motion of the system. 

The equation associated with  is: 
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The equation associated with  is: 
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These equations are hideously complicated, but it is not difficult to get using the Lagrangian 

approach, if you are careful. They would be tremendously difficult to get using the Newtonian 

approach! 

 

 (Ex. 10.9 of F&C 5
th

 ed.) Spherical pendulum – Find the equations of motion using spherical 

polar coordinates. Note that the length is fixed.  This is the same problem as we worked when the 

ball was confined to the surface of a sphere except now we define z down in the direction of the 

gravitational force. 
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The position of the bob in Cartesian coordinates is: 

x Rsin cos , y Rsin sin , and z Rcos , 

The easiest way to get the speed squared is as follows: 
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With r=R constant, 
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The Lagrangian is: 
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so the equations of motion are: 
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These can be rewritten as: 

constantsinandsincossin 222  mR
R

g
. 

The second equation means that the angular momentum of the pendulum is conserved.  

If constant, then 0  and the pendulum swings in a plane. The equation of motion reduces 

to the familiar (hopefully): 

sin
R

g . 

Example #2: (Ex. 7.7 of Thornton) Frictionless bead on a spinning parabolic wire z cr
2
 

rotating with an angular velocity  . What is the condition on the angular frequency to 

get the bead to rotate at a fixed location on the wire? 

 

 

 

 

 

In cylindrical polar coordinates, the velocity is: 

ˆˆˆ 
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rzzrrv , 

so: 
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This system has one degree of freedom, where the bead is along the wire. Use r to describe 

this (could also use z). Since z cr
2
, the dervivative is rcrz  2  and: 

222222

2
1 4 rrrcrmT  . 

The potential energy is U mgz mgcr
2
, so the Lagrangian is: 
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The derivatives of the Lagrangian are: 
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The equation of motion is: 
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 222222 8162
2
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2
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This can be rewritten as: 

02441 22222 gcrrcrrcr  , 

which is a complicated, nonlinear ( Ý r  is squared) differential equation.  

If the bead rotates with r R constant, then 0rr   so: 

R 2gc
2

0, 

And  2gc . 

 

 


