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8.3-.4 Equations of Motion for 2-Body Central Force 

 
 
Project Outline 
 

 

Last time we worked a few examples making use of the fact that natural systems have the 

minimum “action”, so  

  L T U  

Regardless of what coordinates we express it in terms of 
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Must satisfy 

0
ii qdt

d
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LL
 for all the individual coordinates. 

 

Example #1:  

 k

 m

 m

 

Say Exercise #2: A bead of mass m slides without friction along a wire bent into a parabola, 

y ax2, where the y axis points upward. 

 x

 m

 y

 

Example #3: Suppose a particle is confined to move on top of a hemisphere of radius R. Pick 

a good set of generalized coordinates and express the height and speed of the particle in 

terms of them. 
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Along the way, we experienced the advantages of the Lagrangian approach: 

 The Lagrangian (& energies) are scalars, instead of vectors like force and acceleration. 

 It is easier to use whatever coordinates are “natural” with this method. 

 It provides a somewhat “systematic” approach to getting equations of motion. Write 

down the energies in terms of the chosen coordinates and take some derivatives of 

  L T U . 

Drawbacks of the Lagrangian approach: 

 Friction/drag can‟t be included easily. 

 You don‟t get the same mechanistic understanding that dealing with forces and torques 

gives 

For today, you were to read the general proof that the „action integral‟ is indeed minimized (or at 

least „stationary‟) along the correct path and that implies that the integrand (the Lagrangian) must 

satisfy Lagrange‟s equation.  The argument is very similar to what we used in Ch. 6 to develop 

Lagrange‟s equation in the first place – assume a wrong path that has an error of amplitude , 

and then reason out that, when  is 0 you indeed get no error in the integral.   

The discussion in the book is fairly clear, so probably more important than our going over it is 

our getting lots of practice using the Lagrange approach. 

 

Now, we‟ll continue getting more practice. 

I do:  Example #3: (Ex. 10.8 of F&C 5
th

 ed.) Find the equations of motion for the system 

shown below. The block slides without friction along the x axis and the pendulum swings in 

the xy plane on a massless rod of length r. 

 X

 

 x

 y
 M

 m

 r

 

The Cartesian coordinates of the pendulum bob are: 

x X rsin and y rcos . 

The derivatives of these are: 

sinandcos  ryrXx . 

The kinetic energy of the system is: 

22

2
12

2
122

2
12

2
1 sincos  rrXmXMyxmXMT , 

cos2
22

2
12

2
1  rXrXmXMT . 
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The potential energy is U mgrcos , so the Lagrangian is: 

coscos2
22

2
12

2
1 mgrrXrXmXMUT L . 

The equations of motion are: 


LLLL

dt

d

Xdt

d

X
and , 

which give: 

cos0  rXmXM
dt

d
, 

and: 

sincoscossinsin 22  rXmrXmmrrXrm
dt

d
mgrrXm . 

The first equation means that the total momentum in the x direction is conserved: 

constantcos rXmXMPx . 

The second equation simplifies to: 

0sincos
r

g

r

X . 

If M m , the upper mass will barely move ( 0X ) and this reduces to the equation for a 

simple pendulum. These two coupled differential equations are difficult to solve, but they are 

easy to derive using the Lagrangian approach. 

 

 

They do:  Exercise #4: Here‟s a real classic:  suppose a string of length s connects a puck of 

mass m1 on a frictionless table and an object with mass m2 through a hole (see the figure below).  

 
 r

 s -r

 m1

 m2

 

(a) Write the Lagrangian for the system in terms of the puck’s polar coordinates. 

The kinetic energy for the puck is: 

222

12
1

1
 rrmT , 

and for the other mass is: 
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2

22
12

22
1

2 rmrmT  . 

define the gravitational potential energy to be zero at the level of the table, so: 

U m2g s r . 

The Lagrangian is: 

rsgmrmrrmUTT 2

2

22
1222

12
1

21
L . 

(b) Find the equations of motion for the system. 



LLLL

dt

d

rdt

d

r
and , 

 2

1212

2

1 0and rm
dt

d
rmrm

dt

d
gmrm , 

constantand 2

1212

2

1  rmrmmgmrm . 

The second equation is equivalent to conservation of angular momentum. The first equation can 

be rewritten as: 

gm
rm

rmm 23

1

2

21


 . 

Look at some Qualitative cases:  

 Whether the radius grows or shrinks depends on whether the orbital term is greater or less 

than the gravitational term.  The balancing point, where there is no radial acceleration is when 

gm
rm

23

1

2
 

It may not look too familiar in that form, but rephrasing it as 

radial

gential

radial

F
r

v
m

Frm

2

tan

1

2

1


 

May look familiar – when the radial force experienced by m1 is equal to mv
2
/r, the thing executes 

a circular orbit, so r = constant. 
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Example #3: (Ex. 7.5.) A small block is sliding along a plane that can slide without friction. 

The coordinate q1 is clearly not a Cartesian coordinate. 

 
 q2

 q1

 M

 m

 

The velocity of the block relative to the ground (inertial frame) is the velocity of the plane 

plus the velocity of the block relative to the plane (see the diagram below). 

  2q  

 1q  
 v 

  

 

By the law of cosines, the size of the block‟s speed squared is: 

cos2 21

2

2

2

1

2 qqqqv  . 

Alternatively, one can break it down this way and get the same result: 

      

  2q  

 1q  
 v 

  

cos1.1 qq x
  

sin1.1 qq y
  

 

 

The kinetic energy of the system is: 

cos2 21

2

2

2

12
12

22
1 qqqqmqMT  , 

and the potential energy is: 

U mgq1sin . 

The Lagrangian is: 

sincos2 121

2

2

2

12
12

22
1 mgqqqqqmqMUT L . 

The equations of motion are: 

2211

and
qdt

d

qqdt

d

q 

LLLL
, 

which give: 

cossinandcos0 21122 qmqm
dt

d
mgqqmqM

dt

d
 , 
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sincosand0cos 21122 gqqqqmqM  . 

The first equation gives: 

cos12 q
mM

m
q  . 

These equations can be solved (you can check the algebra) for 1q  and 2q  to get: 

2
221

cos

cossin
and

cos
1

sin

m

Mm

g
q

Mm

m

g
q  . 

The right hand sides of these equations are constant, so these are easy to solve. The 

acceleration 1q  of the block relative to the plane and the acceleration 2q  of the plane are 

constant. Try getting these equations using Newton‟s second law! 

 

 

 

 

Exercise #5: Suppose a double pendulum consists of two rigid, massless rods connecting two 

masses. The masses are not equal, but the lengths of the rods are. The pendulum only swings in 

one vertical plane. 

 

  m2

 m1

 

 

 

(a) Write the Lagrangian for the system in terms of the angles shown above. 

Take the top pivot point as the origin and choose positive x to the right and positive y upward. 

The components of the position of m1 are: 

x1 sin and y1 cos , 

so the components of its velocity are, 

sinandcos 11
 yx . 

The components of the position of m2 are: 

x2 sin sin and y2 cos cos , 

x2 sin sin and y2 cos cos , 

so the components of its velocity are, 

sinsinandcoscos 22
 yx . 
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The kinetic energy is: 

2

2

2

222
12

1

2

112
1 yxmyxmT  , 

222

22
122

12
1 sinsincoscos  mmT , 

sinsincoscos2222

22
122

12
1  mmT , 

cos2222

22
122

12
1  mmT , 

cos222

22
122

212
1  mmmT . 

The potential energy is: 

U m1gy1 m2gy2, 

U m1 m2 g cos m2g cos , 

so the Lagrangian is: 

coscoscos 221

2

2

22

22
122

212
1  gmgmmmmmm=L . 

(b) Find the equations of motion of the system. 

The equation associated with  is: 


LL

dt

d
, 

cossinsin 2

2

2

2121

2

2
 mmm

dt

d
gmmm , 

sincossinsin 2

2

2

2121

2

2
 mmmgmmm  

The equation associated with  is: 


LL

dt

d
, 

cossinsin 2

22

2

2
 m

dt

d
gmm , 

sincossinsin 2

22

2

2
 mgmm . 

These equations are hideously complicated, but it is not difficult to get using the Lagrangian 

approach, if you are careful. They would be tremendously difficult to get using the Newtonian 

approach! 
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Example #1: (Ex. 10.9 of F&C 5
th

 ed.) Spherical pendulum – Find the equations of motion 

using spherical polar coordinates. Note that the length is fixed.  This is the same problem as 

we worked when the ball was confined to the surface of a sphere except now we define z 

down in the direction of the gravitational force. 

 z

 x

 y
 

 

 R

 m

 

The position of the bob in Cartesian coordinates is: 

x Rsin cos , y Rsin sin , and z Rcos , 

The easiest way to get the speed squared is as follows: 

ˆˆsinˆ rddrrdrrd


 

So 

ˆˆsinˆ
dt

d
r

dt

d
rr

dt

dr

dt

rd


 

Then 

222

2 sin
dt

d
r

dt

d
r

dt

dr
v  

With r=R constant, 

 

222 sin  RRv  

 

The Lagrangian is: 

cossin 2222

2
12

2
1 mgRmRmgzmvUT L , 

so the equations of motion are: 


LLLL

dt

d

dt

d
and , 

22222 sin0andsincossin  mR
dt

d
mR

dt

d
mgRmR . 

These can be rewritten as: 

constantsinandsincossin 222  mR
R

g
. 
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The second equation means that the angular momentum of the pendulum is conserved.  

If constant, then 0  and the pendulum swings in a plane. The equation of motion 

reduces to the familiar (hopefully): 

sin
R

g . 

Example #2: (Ex. 7.7 of Thornton) Frictionless bead on a spinning parabolic wire z cr
2
 

rotating with an angular velocity  . What is the condition on the angular frequency to 

get the bead to rotate at a fixed location on the wire? 

In cylindrical polar coordinates, the velocity is: 

ˆˆˆ 


rzzrrv , 

so: 

222

2
1

2
12

2
1 


rzrmvvmvmT . 

This system has one degree of freedom, where the bead is along the wire. Use r to describe 

this (could also use z). Since z cr
2
, the dervivative is rcrz  2  and: 

222222

2
1 4 rrrcrmT  . 

The potential energy is U mgz mgcr
2
, so the Lagrangian is: 

2222222

2
1 4 mgcrrrrcrmUT L . 

The derivatives of the Lagrangian are: 

mgcrrrcr
m

r
228

2

22
L

, 

rrcr
m

r



2282

2

L
, 

rrcrrcr
m

rdt

d



2222 8162

2

L
. 

The equation of motion is: 

rdt

d

r 

LL
, 

rrcrrcr
m

mgcrrrcr
m

 222222 8162
2

228
2

. 

This can be rewritten as: 

02441 22222 gcrrcrrcr  , 

which is a complicated, nonlinear ( Ý r  is squared) differential equation.  

If the bead rotates with r R constant, then 0rr   so: 

R 2gc
2

0, 
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and 

2gc . 

 

Next two classes: 

 Monday – More Examples of Lagrange‟s Equations 


