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Last time we learned that the integral of the magnitude of momentum over the path that a system 

really takes is minimal, that is, the principle of “least action” holds. 
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Through a little bit of math, we found that this statement is equivalent to saying that time integral 

of the difference between kinetic and potential energy, i.e., the “Lagrangian”, is minimized, 
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Regardless of what coordinates we express it in terms of 
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Of course, that’s equivalent to saying that the Lagrangian satisfies the differential equations 

0
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LL
 for all the individual coordinates. 

 

We showed that at least for Cartesian coordinates that in turn is equivalent to Newton’s 2
nd

 law. 

As was our practice in Chapter 6, we focused much more on this differential equation which the 

integrand satisfies than on the integral. 

We worked through a few familiar and interesting problems.  They could all be characterized as 

“unconstrained” in that there weren’t any restraining forces that, say, forced the system to only 

move on a surface or along a curve. 

 

This time we will consider constrained systems. 

 

Constrained Motion: 

Often, it does not take 3N parameters to describe the motion of N particles because they are 

subject to constraints. For example, it only takes 2 parameters to describe the motion of a particle 

sliding on a plane. 
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Suppose you are trying to describe the motion of N particles. The parameters q1,q2, ,qn 

( n 3N ) are a set of generalized coordinates if the position of each particle can be expressed in 

terms of q1,q2, ,qn and possibly the time t: 

r r q1,q2, ,qn,t 1, ,N . 

It will also be possible to express each of the generalized coordinates in terms of the positions of 

the particles and possibly the time t: 

qi qi r 1,r 2, ,r N ,t i 1, ,n . 

The number of degrees of freedom for a system is equal to 3N minus the number of constraints 

(see Example #1 below). If the minimum number of generalized coordinates required to 

completely describe a system is equal the number of degrees of freedom, the system is 

holonomic. That is the easier type to handle, so we won’t consider nonholonomic systems.  

An example of a nonholonomic system is a ball rolling without slipping on a flat surface. The 

ball has two degrees of freedom, but it takes more than two coordinates to specify the orientation 

of the ball. The ball can take different paths between two points, so it can end up with different 

points at the top. More coordinates are needed to specify which point is at the top of the ball. 

The Lagrangian can be written as a function of the generalized coordinates, their time 

derivatives, and time: 
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and there will be a Lagrange equation associated with each generalized coordinate: 
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The equations of motion found using the Lagrangian approach are equivalent to the ones found 

using the Newtonian approach. However, the Lagrangian method is much simpler for many 

problems. It also allows the use of whatever coordinates are convenient for describing a system. 

Example #1: How many generalized coordinates are needed to describe the system pictured 

below? (How many degrees of freedom does the system have?) 

 k

 m

 m

 

Just one. The distance from the wall of the block on the horizontal surface or the stretch of 

the spring are good choices. 

The number of degrees of freedom for the two particle is: 

DOF=3(2) - 2(objects move in plane) - 2(objects move along lines) - 1(linked together) = 1. 
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How about working it through. 

 

Exercise #1: Two equal masses are constrained by the spring-and-pulley system shown below. 

Assume that there is no friction and that the pulley is massless. Let x be the distance the spring 

has stretched. 

 k

 m

 m

 

(a) Write the Lagrangian for the system in terms of x. 

The kinetic energy of each block is the same, so the total KE is: 

22

2
12

2
1 xmxmxmT  . 

The potential energy is: 

U Uspr Ugrav
1
2
kx2 mgx , 

and the Lagrangian is: 

mgxkxxmUT 2

2
12L . 

(b) Find the equation of motion of the system. 

xdt

d

x 

LL
, 

xm
dt

d
mgkx 2 , 

02 mgkxxm  . 

From the previous chapter, that would have the solution 

k

mg
tAtx cos)(  where 

k

m2
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Say Exercise #2: A bead of mass m slides without friction along a wire bent into a parabola, 

y ax2, where the y axis points upward. 

 x

 m

 y

 

(a) Write the Lagrangian for the system in terms of x. 

They Do: 

The kinetic energy is: 

22

2
1 yxmT  , 

but: 

xaxx
dx

axd

dt

dx

dx

dy

dt

dy
y  2

2

, 

so: 

222

2
122

2
1 412 xaxmxaxxmT  . 

The potential energy is: 

U mgy mgax2 , 

so the Lagrangian is: 

2222

2
1 41 mgaxxaxmUT L . 

(b) Find the equations of motion of the system. 

I do: 

xdt

d

x 

LL
, 

xxaxxaxmxaxm
dt

d
mgaxxxma  2222222 8414124 , 

02441 2222 gaxxxaxax  . 

I’ll confess to not being terribly eager to find an analytical solution for this expression.  

However, it’s perfectly reasonable to use this in a computational simulation. 
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Try this for  

a = 2 

x0 = 1 

g = 9.8 

vxo=0 

 

Example #2: Suppose a particle is confined to move on top of a hemisphere of radius R. Pick 

a good set of generalized coordinates and express the height and speed of the particle in 

terms of them. 

The spherical polar coordinates  and  with the z axis upward and the origin at the center of 

the sphere is a natural choice. The Cartesian coordinates of the particle are: 

x Rsin cos , y Rsin sin , and z Rcos  

The z component is the height. The components of the particle’s velocity are (remember that 

R is a constant): 

sinand,cossinsincos,sinsincoscos  RzRyRx . 

The speed squared of the particle is: 

2222 zyxv  , 

222222 sincossinsincossinsincoscos Rv . 

The cross terms of the first two squares cancel, so: 

2
22222222222222222 sincossinsincossinsincoscos Rv

, 

222222222 sinsincos Rv , 

22222 sinRv , 

21222 sinRv . 
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Say this takes place on Earth, so there’s a gravitational potential of 

)cos1(mgRmgzU relative to the top of the sphere.  And we’ll say we start with the 

object on the top of the sphere. 

Then  

cossin 2222

2
12

2
1 gRRmmgzmvUT L  

They do:  Which must satisfy 

  

2
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2
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2
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sin0

cossincossin









dt

d

gRRm

dt

dgRRm

dt

d LL

 

So, C2sin  

Now, if we start with the thing on the top of the sphere, then  = 0 so sin  = 0 so C = 0.  Of 

course, the point of C’s being a constant is that it stays the same value, 0, as the object slides.  

Naturally,  will change and so will sin , so the only way for C to remain 0 is for 0 .  That 

means the thing just slides straight down. 

 

Now the Lagrangian must also satisify 









dt

d
RgR

gRRm

dt

dgRRm

dt

d

sincossin

cossincossin

2

2222

2
12222

2
1

LL

 

But we just reasoned that 0 , so we’re left with the old familiar 

Rg sin  

As for an inverted pendulum. 

 

I do: 

What if you don’t start it at the top and you do give it an initial rotation around, then you have 

sincossin2

R

g    And    
cot2

cossin2sin 2




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Again, nothing I crave solving analytically, but something that’s quite reasonable to handle 

computationally. 

t

t




 and 

t

t




 

Then  

cos,sinsin,sincosRr


 

You code this. 

 

Advantages of the Lagrangian approach: 

 The Lagrangian (& energies) are scalars, instead of vectors like force and acceleration. 

 It is easier to use whatever coordinates are “natural” with this method. 

 It provides a somewhat “systematic” approach to getting equations of motion. Write 

down the energies in terms of the chosen coordinates and take some derivatives of 

  L T U . 

Drawbacks of the Lagrangian approach: 

 Friction/drag can’t be included easily. 

 You don’t get the same “physical” understanding that dealing with forces and torques 

gives 

 

Example #3: (Ex. 10.8 of F&C 5
th

 ed.) Find the equations of motion for the system shown 

below. The block slides without friction along the x axis and the pendulum swings in the xy 

plane on a massless rod of length r. 

 X

 

 x

 y
 M

 m

 r

 

The Cartesian coordinates of the pendulum bob are: 

x X rsin and y rcos . 

The derivatives of these are: 

sinandcos  ryrXx . 

The kinetic energy of the system is: 
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22

2
12

2
122

2
12

2
1 sincos  rrXmXMyxmXMT , 

cos2
22

2
12

2
1  rXrXmXMT . 

The potential energy is U mgrcos , so the Lagrangian is: 

coscos2
22

2
12

2
1 mgrrXrXmXMUT L . 

The equations of motion are: 


LLLL

dt

d

Xdt

d

X
and , 

which give: 

cos0  rXmXM
dt

d
, 

and: 

sincoscossinsin 22  rXmrXmmrrXrm
dt

d
mgrrXm . 

The first equation means that the total momentum in the x direction is conserved: 

constantcos rXmXMPx . 

The second equation simplifies to: 

0sincos
r

g

r

X . 

If M m , the upper mass will barely more ( 0X ) and this reduces to the equation for a 

simple pendulum. These two coupled differential equations are difficult to solve, but they are 

easy to derive using the Lagrangian approach. 

 

 

Exercise #4: Suppose a string of length s connects a puck of mass m1 on a frictionless table and 

an object with mass m2 through a hole (see the figure below).  

 
 r

 s -r

 m1

 m2
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(a) Write the Lagrangian for the system in terms of the puck’s polar coordinates. 

The kinetic energy for the puck is: 

222

12
1

1
 rrmT , 

and for the other mass is: 

2

22
12

22
1

2 rmrmT  . 

The define the gravitational potential energy to be zero at the level of the table, so: 

U m2g s r . 

The Lagrangian is: 

rsgmrmrrmUTT 2

2

22
1222

12
1

21
L . 

(b) Find the equations of motion for the system. 



LLLL

dt

d

rdt

d

r
and , 

 2

1212

2

1 0and rm
dt

d
rmrm

dt

d
gmrm , 

constantand 2

1212

2

1  rmrmmgmrm . 

The second equation is equivalent to conservation of angular momentum. The first equation can 

be rewritten as: 

gm
rm

rmm 23

1

21


 . 
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Exercise #5: Suppose a double pendulum consists of two rigid, massless rods connecting two 

masses. The masses are not equal, but the lengths of the rods are. The pendulum only swings in 

one vertical plane. 

 

  m2

 m1

 

 

 

(a) Write the Lagrangian for the system in terms of the angles shown above. 

Take the top pivot point as the origin and choose positive x to the right and positive y upward. 

The components of the position of m1 are: 

x1 sin and y1 cos , 

so the components of its velocity are, 

sinandcos 11
 yx . 

The components of the position of m2 are: 

x2 sin sin and y2 cos cos , 

x2 sin sin and y2 cos cos , 

so the components of its velocity are, 

sinsinandcoscos 22
 yx . 

The kinetic energy is: 

2

2

2

222
12

1

2

112
1 yxmyxmT  , 

222

22
122

12
1 sinsincoscos  mmT , 

sinsincoscos2222

22
122

12
1  mmT , 

cos2222

22
122

12
1  mmT , 

cos222

22
122

212
1  mmmT . 

The potential energy is: 

U m1gy1 m2gy2, 

U m1 m2 g cos m2g cos , 

so the Lagrangian is: 

coscoscos 221

2

2

22

22
122

212
1  gmgmmmmmm=L . 
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(b) Find the equations of motion of the system. 

The equation associated with  is: 


LL

dt

d
, 

cossinsin 2

2

2

2121

2

2
 mmm

dt

d
gmmm , 

sincossinsin 2

2

2

2121

2

2
 mmmgmmm  

The equation associated with  is: 


LL

dt

d
, 

cossinsin 2

22

2

2
 m

dt

d
gmm , 

sincossinsin 2

22

2

2
 mgmm . 

These equations are hideously complicated, but it is not difficult to get using the Lagrangian 

approach, if you are careful. They would be tremendously difficult to get using the Newtonian 

approach! 

 

 

 

Next two classes: 

 Monday – More Examples of Lagrange’s Equations 


