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HW7 

  

 

 

Note:  email out EulerCromer.py code (again) and let them know that they‟ll be modifying it for 

the last problem in the HW. 

 

So, last chapter we learning how to find the equation of a path for which some property is 

minimized – the length, the potential energy, the time under one velocity condition or another.  

The trick was setting up an integral for that property, then imposing that the integrand must 

satisfy Lagrange‟s equation. 
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Where these variables don‟t need to be the Cartesian coordinates, they could be r and  for 

example. 
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Last time we learned that this could be generalized to situations in which it‟s more convenient to 

parameterize the spatial variables in terms of time. 
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Or, perhaps we‟re dealing with spherical coordinates so  
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Heck, whatever the variables may be and however many of them there may be, let‟s call them qi, 

we‟d have  
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Up to this point, we‟ve been considering minimizing some property of a path through space, but 

step back and look at this mathematical relationship as just that – a mathematical truism, then it‟s 

equally applicable to any integral that can be phrased this way.   

 

Now, Historically, it was postulated as an article of faith that the “action” of an object followed 

the path through space which minimized its “action”, that is, 

f
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leads and if we can than justify this claim. 
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Then, following the path of minimum “action” is the same as following the path for 

which these integrals are minimized.  If we imagine as a given the initial conditions (times, 

locations, and speeds) and the time interval over which we‟re looking, then, for an system that 

has no work done on it (only restraining forces and forces that related to potential energies), E is 

constant, so the second integral is just some constant.  That means that minimizing the “action” 

is essentially up to minimizing the first integral. 

Then the integral we‟re interested in has the form 
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The integrand, the difference between the kinetic and potential energy, is called its “Lagrangian.” 
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Now, if this were your desire, to find the way the system would evolve as to minimize its 

“action” then you‟d say that the integrand, the “Lagrangian” must satisfy Lagrange‟s equation 

for each degree of freedom: 
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I‟ll first demonstrate that this is plausible, but a more general (probably not airtight) proof will 

wait until later in the chapter. 
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Single Unconstrained Particle: We will begin by considering a single particle that is 

unconstrained (there is no explicit restriction on its motion). An example of a constraint is 

specifying that a particle moves on the surface of a sphere. The Lagrangian (function) is defined 

as: 

  L T U , 

where the kinetic energy is: 
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and the potential energy is: 

U U r U x,y,z . 

The Lagrangian (  L T U ) is not the same as the total energy of a system ( E T U )! Don‟t 

get the sign wrong or your results will be wrong. 

The following partial derivatives of the Lagrangian are related to the force: 
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Which, of course is definitively true!  Similarly for the other three components.  Then, tracing 

this logic back up, yes, it‟s true that  
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Is minimized for the trajectories of particles, and thus 

f

i

pdsS  

The “action” is minimized. 

Though, as we were in the last chapter, we‟ll more often be interested in applying Lagrange‟s 

equation to the integrand, the “Lagrangian.” 
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Let‟s use this. 

Example 1: A particle in 2-D with gravity in Cartesian Coordinates. 

Choose the y  axis to be upward. The Lagrangian in Cartesian coordinates is: 
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The equations of motion are: 
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These are exactly what you would get using Newton‟s second law. 

 

Ask them to set-up problem 7.3 
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Similarly, 

ymky   

 

Generalized Coordinates: 

While the equivalence of this „lest action principle‟ and Newton‟s 2
nd

 law is evident in Cartesian 

coordinates, you can of course re-express x, y, z in terms of polar or spherical coordinates, or 

even some other convenient variables.  So, the action integral can be written in terms of other 

coordinates. These do not have to be spherical polar or cylindrical polar coordinates. We‟ll just 

vaguely say use our generalized coordinates and labeled q1, q2, q3. They must have the property 

that they uniquely specify the position, r : 

r r q1,q2,q3  

And, for that matter, vice versa: 

qi qi r i 1,2,3. 

The Lagrangian can be written in terms of the generalized coordinates and their derivatives: 
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and the action integral is: 
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Using Hamilton‟s principle, the equations of motion (Euler-Lagrange equations) are: 
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The derivatives of the Lagrangian are not necessarily components of the force and the 

momentum. However, they are similar so we will make the definitions: 
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The latter play an important role in Hamiltonian mechanics (Ch. 13). 

 

Example 2: A particle in 2-D in Polar Coordinates. 

The Lagrangian in Cartesian coordinates is: 
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2
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The transformations from polar coordinates are: 

x rcos and y rsin , 

so the derivatives of the Cartesian coordinates are: 

cossinandsincos  rryrrx . 

The Lagrangian can be rewritten as: 
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The equation of motion associated with r is: 
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This can be rewritten to show that it is equivalent to the radial component of Newton’s 

second law: 
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The equation of motion associated with  is: 
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The tangential ( ) component of the force is: 
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The torque is rF  and the angular momentum is 2mrL , so the second equation of 

motion is equivalent to: 
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Several Unconstrained Particles: 

What we have done can be generalized for multiple particles. The Lagrangian for N particles in 

Cartesian coordinates is: 
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and the 3N equations of motion are: 
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The Lagrangian can also be written in terms of 3N generalized coordinates q1,q2, ,q3N : 
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and there will be 3N equations of motion in terms of the generalized coordinates: 
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Example: 7.8 

Time for HW #6 questions 
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Re-phrase L 

 

Next two classes: 

 Friday – Lagrangian Approach for Constrained Motion 

 Monday – Examples of Lagrange‟s Equaitons 


