Phys 331: 10.1-. 2 Center of Mass \& Rotation about a Fixed Axis

Fri., 11/30	10.1-2 Center of Mass \& Rotation about a Fixed Axis	
Mon., 12/3 Tues. 12/4 Wed., 12/5 Thurs. 12/6 Fri., 12/7	10.3-. Rotation about any Axis, Inertia Tensor Principle Axes 10.5-. 6 Finding Principle Axes, Precession 10.7-. 8 Euler's Equations	HW10a (10.6-.22) HW10b (10.36, 10.39)

10.1 Properties of the Center of Mass:

Pretty much everything can be split into CM \& relative parts!
The definition of the location of the CM for a system of particles is:

$$
\vec{R}=\frac{1}{M} \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha} \rightarrow \frac{1}{M} \int \frac{l^{m}}{V} \vec{r} r,
$$

where m_{α} is the mass at the position \vec{r}_{α}, M is the total mass, and ρ is the density. Usually, we calculate one component of the CM at a time! For example, the z component is:

$$
Z=\frac{1}{M} \sum_{\alpha} m_{\alpha} z_{\alpha} \rightarrow \frac{1}{M} \int \frac{l m}{d V} z d V .
$$

Example: 10.3

Where's the Center of Mass of this?

Intuitively: Given the $x-y$ symmetry, it will be on the z-axis; $4 / 5$ of the mass is in the $x-y$ plane and $1 / 5$ is a distance H above, so the center of mass will be $1 / 5$ of the way up from the $x-y$ plane.

Mathematically,
$Z=\frac{1}{M} \sum_{\alpha} m_{\alpha} z_{\alpha}=\frac{1}{5 m}(n 0+m 0+m 0+m 0+m H) \frac{1}{5} H$
$X=\frac{1}{M} \sum_{\alpha} m_{\alpha} x_{\alpha}=\frac{1}{5 m}\left(m \frac{L}{2}+m \frac{L}{2}+m \frac{-L}{2}+m \frac{-L}{2}+m 0\right)=0$

Example: 10.5 (modified)

Find the Center of mass of this $1 / 4$ of a sphere.
Given the Symmetry, it will be along the Z axis. $Z=\frac{1}{M} \sum_{\alpha} m_{\alpha} z_{\alpha} \rightarrow \frac{1}{M} \int \frac{m}{v V} z d V$

Taking the differential morsel of mass to be a pancake of volume $d V=\pi \rho^{2} d z=\pi R^{2}-z^{2} d z$, and the density is $\frac{l^{m}}{V}=\frac{M}{V}$. So,
$Z=\frac{1}{M} \int \frac{m}{V} z d V=\frac{1}{M} \int \frac{M}{V} z \pi\left(R^{2}-z^{2} \lambda_{z} z=\frac{1}{V} \int_{z=\frac{1}{4} R}^{R} z \pi\left(\mathbf{R}^{2}-z^{2} \lambda_{z} z\right.\right.$
To find the volume, which is in the denominator, we'd do a similar integral, but without the extra factor of z :

$$
V=\int_{z=\frac{1}{4} R}^{R} \pi\left(R^{2}-z^{2} d z\right.
$$

So,
$Z=\frac{\int_{z=\frac{1}{4} R}^{R} z \pi\left(R^{2}-z^{2} d z\right.}{\int_{z=\frac{1}{4} R}^{R} \pi\left(R^{2}-z^{2} d z\right.}=\frac{\int_{z=\frac{1}{4} R}^{R} z\left(R^{2}-z^{2} d z\right.}{\int_{z=\frac{1}{4} R}^{R}\left(R^{2}-z^{2} d z\right.}=\frac{\frac{1}{2} z^{2} R^{2}-\left.\frac{1}{4} z^{4}\right|_{\frac{1}{4} R} ^{R}}{z R^{2}-\left.\frac{1}{3} z^{3}\right|_{\frac{1}{4} R} ^{R}}=\frac{\left.\left(R^{4}-\frac{1}{4} R^{4}\right) \frac{1}{4} R^{4}-\frac{1}{4} \frac{1}{4^{4}} R^{4}\right)}{\left(R^{3}-\frac{1}{3} R^{3}\right)} \boldsymbol{\jmath}\left(R^{3}-\frac{1}{3} \frac{1}{4^{3}} R^{3}\right)$,
$=R \frac{\left(-\frac{1}{4}\right)\left(\frac{1}{4^{2}}-\frac{1}{4^{5}}\right)}{\left(-\frac{1}{3}-\left(-\frac{1}{3} \frac{1}{4^{3}}\right)\right.}=R \frac{1-\frac{1}{4^{4}} 3}{4\left(-\frac{1}{4}\left(-\frac{1}{3} \frac{1}{4^{2}}\right)\right.}=R \frac{\frac{253}{256}}{\left.\frac{1}{8}\right)}=R \frac{12,144}{20,736}=R(.5856)$,

For the half-sphere, z runs from 0 to R (note, if we had some other fraction of a sphere, z would simply run over a smaller range.)
The total momentum for the system is:

$$
\vec{P}=\sum_{\alpha} \vec{p}_{\alpha}=M \dot{\vec{R}}
$$

and the net external force on the system is:

$$
\vec{F}^{\mathrm{ext}}=\dot{\vec{P}}=M \ddot{\vec{R}} .
$$

which means the CM moves like a single particle of mass M subjected to the net external force.

The total angular momentum about an origin O is:

$$
\vec{L}=\sum_{\alpha} \vec{\ell}_{\alpha}=\sum_{\alpha} \vec{r}_{\alpha} \times \vec{p}_{\alpha}=\sum_{\alpha} \vec{r}_{\alpha} \times m_{\alpha} \dot{\vec{r}}_{\alpha},
$$

where \vec{r}_{α} is the position relative to O.
We can also describe the position of each mass in the system by the position \vec{R} of the CM and the position $\vec{r}_{\alpha}^{\prime}$ relative to the CM (see the diagram below) by:

$$
\vec{r}_{\alpha}=\vec{R}+\vec{r}_{\alpha}^{\prime} .
$$

Substituting in the relation above, we get:

$$
\begin{gathered}
\vec{L}=\sum_{\alpha} \hat{R}+\vec{r}_{\alpha}^{\prime} \times m_{\alpha}+\dot{\vec{r}}_{\alpha}^{\prime}, \\
\vec{L}=\sum_{\alpha} \vec{R} \times m_{\alpha} \dot{\vec{R}}+\sum_{\alpha} \vec{R} \times m_{\alpha} \dot{\vec{r}}_{\alpha}^{\prime}+\sum_{\alpha} \vec{r}_{\alpha}^{\prime} \times m_{\alpha} \dot{\vec{R}}+\sum_{\alpha} \vec{r}_{\alpha}^{\prime} \times m_{\alpha} \dot{\vec{r}}_{\alpha}^{\prime} .
\end{gathered}
$$

Factor out the terms that are not summed over to get:

$$
\vec{L}=\left(\sum_{\alpha} m_{\alpha}\right) \vec{R} \times \dot{\vec{R}}+\vec{R} \times\left(\sum_{\alpha} m_{\alpha} \dot{\vec{r}}_{\alpha}^{\prime}\right)+\left(\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^{\prime}\right) \times \dot{\vec{R}}+\sum_{\alpha} \vec{r}_{\alpha}^{\prime} \times m_{\alpha} \dot{\vec{r}}_{\alpha}^{\prime}
$$

The "weighted" sum of the positions relative to the center of mass is zero, because $\vec{r}_{\alpha}^{\prime}=\vec{r}_{\alpha}-\vec{R}$ and (the final two terms are equal by definition):

$$
\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^{\prime}=\sum_{\alpha} m_{\alpha}\left(\vec{r}_{\alpha}-\vec{R}\right)=\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}-\left(\sum_{\alpha} m_{\alpha}\right) \vec{R}=\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}-M \vec{R}=0 .
$$

The summation in the second term is zero because:

$$
\sum_{\alpha} m_{\alpha} \dot{\vec{r}}_{\alpha}^{\prime}=\frac{d}{d t}\left(\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^{\prime}\right)=\frac{d}{d t} \mathbf{0}_{-}^{\prime}=0 .
$$

This leaves:

$$
\vec{L}=\mathbf{k} \times M \dot{\vec{R}}^{\prime}+\sum_{\alpha} \vec{r}_{\alpha}^{\prime} \times m_{\alpha} \dot{\vec{r}}_{\alpha}^{\prime}=\vec{R} \times \vec{P}+\sum_{\alpha} \vec{r}_{\alpha}^{\prime} \times m_{\alpha} \dot{\vec{r}}_{\alpha}^{\prime},
$$

which means that the angular momentum can be broken into two parts:

$$
\vec{L}=\vec{L}(\text { motion of CM })+\vec{L}(\text { motion relative to CM }) .
$$

By analogy to the earth's motion, we can label these as orbital and spin parts:

$$
\vec{L}=\vec{L}_{\text {orb }}+\vec{L}_{\text {spin }},
$$

where $\vec{L}_{\text {orb }}=\vec{R} \times \vec{P}$. The rate of change of the orbital angular momentum is:

$$
\dot{\vec{L}}_{\text {orb }}=\frac{d}{d t} \times \vec{P}=\dot{\vec{R}} \times \vec{P}+\vec{R} \times \dot{\vec{P}} .
$$

The first term is zero because $\dot{\vec{R}} \| \vec{P}$, so using Newton's second law, $\vec{F}^{\text {ext }}=\dot{\vec{P}}$, gives:

$$
\dot{\vec{L}}_{\text {orb }}=\vec{R} \times \vec{F}^{\text {ext }} \text {, }
$$

so once again the CM acts like a particle of mass M subjected to the net external force.
The rate of change of the total angular momentum is:
$\dot{\vec{L}}=\sum \vec{r}_{\alpha} \times \vec{F}_{\alpha . n e t}$
However, the terms involving internal forces all vanish assuming that they obey Newton's $3^{\text {rd }}$ and are central. For example, consider the two terms that involve the force of particle 1 on particle 2 and that of particle 2 on particle 1 :

$$
\vec{r}_{1} \times \vec{F}_{1 \leftarrow 2}+\vec{r}_{2} \times \vec{F}_{2 \leftarrow 1}=\vec{r}_{1} \times \vec{F}_{1 \leftarrow 2}-\vec{r}_{2} \times \vec{F}_{\substack{\text { Newton's } \\ \text { 3rd }}}=\vec{r}_{1}-\vec{r}_{2} \times \vec{F}_{1 \leftarrow 2}=\vec{r}_{1 \leftarrow 2} \times \vec{F}_{1 \leftarrow 2}=0
$$

In this way, each internal force term disappears, so what're we're left with are just the external forces:

$$
\begin{gathered}
\dot{\vec{L}}=\vec{\Gamma}^{\mathrm{ext}}=\sum \vec{r}_{\alpha} \times \vec{F}_{\alpha}^{\mathrm{ext}}=\sum \mathbf{C}_{\alpha}^{\prime}+\vec{R} \times \vec{F}_{\alpha}^{\mathrm{ext}}=\sum \vec{r}_{\alpha}^{\prime} \times \vec{F}_{\alpha}^{\mathrm{ext}}+\vec{R} \times \sum \vec{F}_{\alpha}^{\mathrm{ext}}, \\
\dot{\vec{L}}=\sum \vec{r}_{\alpha}^{\prime} \times \vec{F}_{\alpha}^{\mathrm{ext}}+\vec{R} \times \vec{F}^{\mathrm{ext}},
\end{gathered}
$$

so the rate of change of the spin angular momentum is ($\vec{F}_{\alpha}^{\text {ext }}$ is the external force on m_{α}):

$$
\begin{gathered}
\dot{\vec{L}}_{\text {spin }}={\dot{\vec{L}}-\dot{\vec{L}}_{\mathrm{orb}}=\vec{r}_{\alpha}^{\prime} \times \vec{F}_{\alpha}^{\mathrm{ext}}+\vec{R} \times \vec{F}^{\mathrm{ext}}-\boldsymbol{R} \times \vec{F}^{\mathrm{ext}},}^{-} . \dot{\vec{L}}_{\mathrm{spin}}=\sum \vec{r}_{\alpha}^{\prime} \times \vec{F}_{\alpha}^{\mathrm{ext}}=\vec{\Gamma}^{\mathrm{ext}} \text { bout CM } .
\end{gathered}
$$

The total kinetic energy for a system is:

$$
T=\sum_{\alpha} \frac{1}{2} m_{\alpha} \dot{\vec{r}}_{\alpha}^{2} .
$$

The speed squared can be expressed in terms of the velocity of the CM and the velocity relative to the CM:

$$
\dot{\vec{r}}_{\alpha}^{2}=\left(\dot{\vec{r}}_{\alpha}^{\prime}, \dot{\vec{R}}^{2}+2 \dot{\vec{R}} \cdot \dot{\vec{r}}_{\alpha}^{\prime}+\left({ }_{\alpha}^{\prime}{ }^{2},\right.\right.
$$

SO:

$$
T=\frac{1}{2} \sum m_{\alpha} \dot{\underline{R}}^{2}+\dot{\vec{R}} \cdot\left(\sum_{\alpha} \frac{1}{2} m_{\alpha} \dot{\vec{r}}^{\prime}\right)+\sum_{\alpha} \frac{1}{2} m_{\alpha} \dot{\vec{r}}_{\alpha}^{\prime 2}
$$

We have already shown that the middle term is zero, so the kinetic energy can be split into two parts:

$$
T=\frac{1}{2} M \dot{\vec{R}}^{2}+\sum_{\alpha} \frac{1}{2} m_{\alpha} \dot{\vec{r}}_{\alpha}^{\prime 2}
$$

$$
T=T(\text { motion of } \mathrm{CM})+T(\text { motion relative to } \mathrm{CM}) \text {. }
$$

10.2 Rotation about a Fixed Axis:

Suppose a body is rotating about a fixed axis, which we will call the z axis, so $\vec{\omega}=(0,0, \omega)$. The origin O lies somewhere along this axis of rotation. Imagine the body divided into several small masses m_{α} with positions \vec{r}_{α} (see the diagram below).

The angular momentum relative to the origin (or any point on the axis of rotation) is:

$$
\vec{L}=\sum \vec{\ell}_{\alpha}=\sum m_{\alpha} \vec{r}_{\alpha} \times \vec{v}_{\alpha}
$$

The velocity of the mass at $\vec{r}_{\alpha}=\left(x_{\alpha}, y_{\alpha}, z_{\alpha}\right)$ is:

$$
\left.\vec{v}_{\alpha}=\vec{\omega} \times \vec{r}_{\alpha}=\operatorname{det} \left\lvert\, \begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
0 & 0 & \omega \\
x_{\alpha} & y_{\alpha} & z_{\alpha}
\end{array}\right.\right\rfloor=\left(-\omega y_{\alpha}, \omega x_{\alpha}, 0\right)
$$

so:

$$
\left.\vec{\ell}_{\alpha}=m_{\alpha} \vec{r}_{\alpha} \times \vec{v}_{\alpha}=m_{\alpha} \cdot \operatorname{det} \left\lvert\, \begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
x_{\alpha} & y_{\alpha} & z_{\alpha} \\
-\omega y_{\alpha} & \omega x_{\alpha} & 0
\end{array}\right.\right]=m_{\alpha} \omega\left(-z_{\alpha} x_{\alpha},-z_{\alpha} y_{\alpha}, x_{\alpha}^{2}+y_{\alpha}^{2}\right) .
$$

The total angular momentum is:

$$
\begin{aligned}
& L_{x}=-\sum m_{\alpha} x_{\alpha} z_{\alpha} \omega \\
& L_{y}=-\sum m_{\alpha} y_{\alpha} z_{\alpha} \omega
\end{aligned}
$$

$$
L_{z}=\sum m_{\alpha}\left(x_{\alpha}^{2}+y_{\alpha}^{2}\right) \omega .
$$

In Chapter 3, there was a brief mention that the angular momentum is not necessarily in the same direction as the angular velocity, but we ignored the components that were perpendicular to the angular velocity. The z component can be written as:

$$
L_{z}=\sum m_{\alpha} \rho_{\alpha}^{2} \omega=I_{z} \omega,
$$

where $\rho_{\alpha}=\sqrt{x_{\alpha}^{2}+y_{\alpha}^{2}}$ is the distance from the axis of rotation and the moment of inertia about the z axis is:

$$
I_{z}=\sum m_{\alpha} \rho_{\alpha}^{2} .
$$

The total kinetic energy of the rotating body is:

$$
T=\frac{1}{2} \sum m_{\alpha} v_{\alpha}^{2}=\frac{1}{2} \sum m_{\alpha}\left(\rho_{\alpha} \omega\right)^{2}=\frac{1}{2} I_{z} \omega^{2},
$$

is related to the moment of inertia for rotation about a fixed axis.
The other two components can be written as:

$$
L_{x}=I_{x z} \omega \quad \text { and } \quad L_{y}=I_{y z} \omega,
$$

where the products of inertia are:

$$
I_{x z}=-\sum m_{\alpha} x_{\alpha} z_{\alpha} \quad \text { and } \quad I_{y z}=-\sum m_{\alpha} y_{\alpha} z_{\alpha} .
$$

DEMO: Bars perpendicular to the axis and at an angle. When spun the one at an angle "wants" to wobble because its angular momentum is not along the axis.

Example: Find the moment and products of inertia for rod of mass M and length L in the $x z$ plane at an angle of 30° with the z axis which passes through the middle.

The rod extends a length $L \sin 30^{\circ}=L / 2$ in the horizontal direction and $L \cos 30^{\circ}=\sqrt{3} L / 2$ in the vertical direction.

Divide the rod into slices. A representative one at x of width $d x$ is shown above. The moment of inertia about the z axis is (since $y=0$ for each piece):

$$
\begin{gathered}
I_{z}=\sum m_{\alpha} \rho_{\alpha}^{2}=\sum m_{\alpha} x_{\alpha}^{2}=\sum\left(\left(\frac{M}{L / 2}\right) d x\right) x^{2}=\sum x^{2}\left(M \frac{d x}{L / 2}\right) \rightarrow \frac{2 M}{L} \int_{-L / 4}^{+L / 4} x^{2} d x, \\
I_{z}=\frac{4 M}{L} \int_{0}^{+L / 4} x^{2} d x=\frac{4 M}{L}\left(\left.\frac{x^{3}}{3}\right|_{0} ^{L / 4}=\frac{M L^{2}}{48} .\right.
\end{gathered}
$$

The products of are inertia are (since $y=0$ for each piece):

$$
I_{y z}=-\sum m_{\alpha} y_{\alpha} z_{\alpha}=0
$$

and (since $\frac{x_{\alpha}}{z_{\alpha}}=\tan 30^{\circ} \Rightarrow z_{\alpha}=\sqrt{3} x_{\alpha}$):

$$
I_{x z}=-\sum m_{\alpha} x_{\alpha} z_{\alpha}=-\sqrt{3} \sum m_{\alpha} x_{\alpha}^{2}=-\sqrt{3}\left(\frac{M L^{2}}{48}\right)
$$

