
Physics 331 – Advanced Mechanics

Euler-Cromer Method

Not all of the differential equations encountered in this course (and elsewhere) can be

solved analytically. However, there are numerical methods that can be used to solve them

with a computer. You will have to solve about one problem per homework assignment

computationally. We will focus on the solution of second order differential equations (i.e.

involving first and second derivatives) because those are the most common in classical

mechanics. For many problems, a fairly simple approach called the Euler-Cromer Method

is sufficient. This method is easy to implement in Python or even lowly MS Excel.

Euler Method

The simplest numerical method to solve differential equations is the Euler Method.

Suppose you want to find x t and you know:

. txfx
dt

xd
dt

dx ,,
2

2



Typically, you know the initial conditions of a system (i.e. values of x and dt
dxx at

some time). Appealing to the definition of the derivative,
t

ttx
x

t

)(
lim

0
 , if time is

divided into merely small (instead of infinitesimal) steps t , then:

t

txttx
x

)()(
 and

t

txttx
x

)()(
 .

The first equation can be rearranged to approximate the solution a step forward in time:

 txtxttx )()(or txxx iii


1 .

If x is a position coordinate, then we’re essentially approximating that the speed remains

constant over the time interval while updating the position.

Meanwhile, the second equation can be rearranged for updating the first derivative in

terms of the second:

 txtxttx )()(or txtxx iii
)(1

We’re essentially approximating that the acceleration (and corresponding forces) remains

constant over the time interval while updating the velocity.

Now we have the new position, new velocity, and, since the acceleration can depend on

these as well as on the time, we can calculate a new acceleration. Then we start all over

using our newly calculated values to find new positions and velocities (and accelerations):

txxx iii 112
 , txtxx iii 112)( .

Plugging these two into each other is enlightening:

2

112)()(txttxxttxtxxx iiiiiii


So, the new position depends on the current position and on the previous velocity and

acceleration. Now, if there’s a systematic evolution in the system’s motion, then this

offset between which position and which velocity and acceleration are used can slowly

add up to a big error.

Euler-Cromer Method

A simple modification to the Euler Method greatly improves the accuracy of the

numerical solution. First, find the first derivative after a step forward in time as before:

 txtxttx )()(or txtxx iii
)(1

Next, use the derivative at this later time to step x forward in time with:

 tttxtxttx )()(or txxx iii 11
 .

Note the slight difference between this and the Euler Method.

The derivative after two time steps is approximately:

txtxx iii 112)( ,

and the solution after two steps is:

txxx iii 212
 ,

and so on. Now, plugging these two into each other shows

2

1111112)()(txttxxttxtxxx iiiiiii


By this method, the next position is calculated based on the current position, velocity, and

time – the right-hand side is all in synch.

Implementation in Python

You may remember from Phys 231 writing lots of programs with lines like

Earth.pos = <xxx,xxx,xxx> ...or


Earth.p = <xxx.xxx.xxx> ...op


while t < tmax:

 F=-G*Earth.m*Sun.m*Earth.pos/(mag(Earth.pos))**3 o

o

Earthsun

o r
r

mM
GF


3

 Earth.p = Earth.p + F*deltat tFpp oo


1

 Earth.pos = Earth.pos + (Earth.p/Earth.m)*deltat t
m

p
rr o

1
1




 t = t + deltat ttt o1

Plugging the position and momentum equations into each other and rewriting in terms of

position derivatives makes it evident that this is taking an Euler-Cromer approach:

222

1 trtrrtatvrt
m

F
t

m

p
rt

m

tFp
rr oooooo

oo
o

oo
o









But be warned, simply flipping the three lines of code inside the loop would downgrade it

to a mere Euler approach!

The code “EulerCromer VPython 1.py” shows how to implement the Euler-Cromer

Method. “EulerCromer VPython F 1.py” explicitly applies it to model a ball’s motion

under the influence of a force. The code “EulerCromer Comparison.py” illustrates how

much better this method works than the Euler Method. The solution to the differential

equation in the example:

d2x

dt2
kx,

should be a sinusoidal function. Notice that the amplitude of the solution with the Euler

Method increases with time. However, the Euler-Cromer method gives a solution with a

constant amplitude.

Modify EulerCromer VPython 1.py or EulerCromer VPython F 1.py to address the

scenario at hand with the following steps:

1. Save a new copy have the original, and give the new copy an appropriate name.

2. Change the equation for a or F.

3. If necessary, change the initial conditions.

4. Change the time step, dt slightly to make sure that the solution does not change.

Practice Exercise

Modify the program to simulate a ball moving under the influence of a force like:

xxx  2.04

(assuming appropriate units)

with the initial conditions x 0 0 and)0(x = 5.

