
Phys 331:  Ch 5.  Damped & Driven Harmonic Oscillator, Resonance     1 

 

 

Restructure for next year: Damped but not driven first day; Driven and Resonance next day, 

Resonance & Fourier the final day. 

Equipment 

 White boards and pens 

 Harmonic Oscillator python 

 Alan’s resonance demo – three masses on wires of different lengths 

 Mass with two springs, post and driver 

 String set up for resonating 

 ladder 

Examples and Exercises: 

Before plowing ahead, I want to take a moment to pause and work with what we’ve met so far.  Here are 

the key relations: 

Euler’s Relations 
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Taylor Series 
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Hook’s law 
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(Linear) Damped Oscillator 
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5.5-.6 Resonance 

 

5.7 -.8 Fourier Series 

                           
6.1-.2 Calculus of Variations – Euler-Lagrange 
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(Linearly) Damped & Driven Oscillator 
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Okay, where we left off last time was talking about the damped-driven oscillator.  We’d made a 

reasonable guess and found it to be right! 

tAtx Ddriven cos  
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However, a general solution to this second-order differential equation should have two free parameters 

(for inputting initial position and velocity), but our solution has no free parameters; even the amplitude is 

completely determined by the strength of the driving force, and the frequencies and damping constant. 

Unfortunately, as good a solution as it is, it has no free parameters. 

But that’s not the completely general solution yet.  Then again, recall that the solutions for the un 

driven equation, if plugged into the left hand side will give 0.  Which means that we can add 

them to this solution and get another solution! 

 

That is  
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And now we’ve found that  

)cos(2 2

o tfxxx dodrivdrivdriv
  

Where we’ve now found that tAtxdriv cos  

But adding these two equations together, we’d also get that 
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So, apparently, undriv xx  is also a solution to this driven case.  That is our most general 

solution. 
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The book couches this result in more general differential-equations language; for many of you, I 

hope that helps to make connections, and understand this better.  I’ve avoided using that 

language (homogeneous, inhomogeneous, particular,…) in case it was more useful just focusing 

on the specific case at hand. 
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In the formal language of Differential Equations, what I just argued is that if you have a 

particular, linear differential equation, 

tftxD p )(ˆ   (using the Quantum notation of ‘hat’ for an operator) 

Then the general solution is the linear combination of a particular solution to this equation, xp(t) 

and the solutions to this simpler “homogenious” equation 

0)(ˆ txD h
 

Since  
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The homogeneous solution determined by the initial conditions must be added to this to get the 

general solution. Note that the homogeneous solution decays, so it can also be called the 

transient solution. Only the early motion of the oscillator depends on how it starts out. The 

particular solution is an oscillatory solution with the same frequency as the driving frequency, 

which can also be called the steady-state solution. The motion for large times only depend on the 

parameters of the system (including the driving force), not the initial conditions. 

 

Example: (similar to Ex. 5.3) Suppose o 10  rad/s, o 20 2 rad/s, 

f0 1000 m/s2 , and 4  rad/s  (only difference from Ex. 5.3). If the oscillator starts at rest 

at the orign, find and plot the function for position as a function of time. Compare with the 

results for Ex. 5.3. 

The frequency for the undriven oscillator (and the homogeneous solution) is: 
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9.987 . 

The amplitude of the particular solution is: 
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1.177 m, 

and the phase angle is: 
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0.0465 radians. 

The general solution for an underdamped, driven oscillator can be written as: 

x t Acos t e t B1 cos 1t B2 sin 1t , 

where the coefficients B1 and B2  must be determined from the initial conditions xo vo 0. 

From the equation above: 

xo Acos B1, 

B1 xo Acos 0 1.177 m cos 0.0465 rad 1.176 m. 
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Taking the derivative of x t  gives: 

v t Asin t e t B1 cos 1t B2 sin 1t 1e
t B1 sin 1t B2 cos 1t , 

vo Asin B1 B2, 

B2

1

1

vo Asin B1

1

9.987
0 4 1.177 m sin 0.0465 rad 1 2 1.176 m , 

B2 0.807 m. 

The graph of the solution is shown below (solid line) along with the solution of Ex. 5.3 

(dashed line) where the driving frequency is 2  rad/s . The steady state solution for this 

example has a slightly larger amplitude because the driving frequency is closer to the natural 

frequency. It also lags a little farther behind the driving force. 
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Resonance: 

As you’re familiar, if an oscillating system is driven at the right frequency, its amplitude gets 

quite large – resonance. 

Demo: 

 Alan’s resonance demo (three masses on bars) 

 Mass on spring dirving 

Qualitatively, we say that a system is in resonance when it has the most energetic response to a 

driving force – that is, it’s oscillating with the greatest amplitude, it’s moving with the greatest 

speed.  Now we’ll explore resonance in a damped-driven harmonic oscillator. 
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From last time, the steady state (large time) solution for a damped oscillator with driving force 

per unit mass of f t fo cos t  is: 

xp t Acos t , 

where the phase shift of the steady state oscillation relative the driving force is: 
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and the amplitude A is given by: 
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Recall that the natural frequency is o k m  and the damping constant is b 2m.  

Now, often one is interested in the energy associated with a resonance, and since energy goes 

like 
2

2
12

2
1 kxxm , the square of the amplitude is relevant to that question – maximize that, and 

you’ve maximized the energy in the system. 
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We’ll first get familiar with how the amplitude depends upon the driving frequency.  A plot 

would look something like this: 
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Generally, when you’ve got a plot that’s peaked like this, whether it’s a resonance plot, or a plot 

of car accidents as a function of age, there are three quantities that roughly characterize it –  

 where the peak is 

 how high the peak is 

 how wide it is.   

 

 

Where is the Peak?   

The dramatically larger response when the system is driven at the right frequency is called 

resonance. It is easy to see that the amplitude gets largest when oD  because the first term 

in the denominator gets small. For the location, maximize the function (take its derivative and set 

it equal to 0). 

 

The exact frequency resulting in the maximum amplitude is found by locating the minimum of 

the denominator: 
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with respect to . This gives: 
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so the frequency that gives the largest amplitude (maximum response) is: 
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(interesting that , if 
o2 , then in a peculiar regime – underdamped, but resonance 

frequency is imaginary?  This must be signaling that if b is big enough (but not too big), you can 

get oscillation, but no resonance peak; the curve monatomically decays toward 0) 

 

How High is the Peak? 

Plugging that back in gives the peak height. 
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(recall, we are considering the under-damped driven case, so o> .) 

 

If the damping constant  is small compared to the natural frequency o, then ores  and the 

maximum amplitude-squared is: 

2
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That tells us in a quantitative way what we qualitatively would expect: a smaller damping 

constant  leads to a larger amplitude and a frequency closer to the natural frequency.  

 

So, we’ve identified the frequency and amplitude of the peak.  What remains is characterizing 

how ‘wide’ it is. 

 

How wide is it? 
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Of course, nothing but a rectangular peak has a set width, so it’s sort of a matter of convention 

what mathematical representation we us for characterizing a peak’s width.  The common 

convention is the full width of the peak half-way up towards is maximum.  That’s a nice, 

meaningful convention since, regardless of the functional form of a peak, you can calculate this 

and it reflects whether the peak’s aspect ratio is quite broad or sharp. 

 

The full width at half maximum  (FWHM) and the half width at half maximum (HWHM) of the 

amplitude squared are defined as shown below.  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2

A
2

 FWHM

 HWHM

 

We can find these widths approximately (Prob. 5.41). The maximum of the amplitude squared is 

approximately: 
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so the amplitude squared is half as large when the denominator is twice as large: 
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Focusing on the denominator, 
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Take the square root and factor the left side: 
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More precisely, 
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So the full width would be the difference between these two options 
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The HWHM of A
2
 (which is related to energy) is: 

HWHM , 

and the FWHM is: 

FWHM 2 . 

The smaller the damping constant, the sharper the resonance curve (see the figure below). 

 

Quality Factor:  Now, if our system had a resonance frequency of 10 Hz and a peak width of 5 

Hz, we’d say the peak was pretty broad, but if our system had a resonance of 10 MHz and still a 

peak width of just 5 Hz, we’d say that was pretty sharp – drawn on an axis that stretches from 0 

to say 12 MHz, that peak would look like a single spike of no width at all, a delta function.  The 

point is that sometimes what matters isn’t the absolute width, but the relative width of a peak.  

Relative Width 
valuepeak

FWHM

.
 

Or phrased the other way around, we have what’s known as the “quality factor”, essentially a 

measure of the peak’s relative sharpness  

 

Quality Factor  
FWHM

valuepeak.
 

Before I make this specific to our case, I’ll point out that this idea of a “quality factor” comes up 

with any kind of peak – perhaps a histogram of how long it takes a ball to roll down an inclined 

plane (first couple of labs of Phys 233). 

Okay, for the situation at hand, we’re talking driving frequencies for a simple harmonic 

resonator; the peak is around o and the width is around 2 : 

2

oQ . 

So, the less damping, the sharper the peak. 
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Conceptually, we can see this as the result of the interplay between oscillation and decay. The 

time for the oscillator to decrease in amplitude by a factor of 1/e, when not driven, is: 

decay time 1 . 

The period for one oscillation is: 

period 2 1 2 o . 

Therefore, the quality factor can be written as: 

Q o

2

1

2 o

decay time
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, 

which is  times the number of oscillations in one decay time. 

 

Phase: 

Now, the amplitude isn’t the only thing that varies according to the driving frequency, so does 

the phase.  The phase shift of the steady state oscillation relative the driving force is: 
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This is a measure of how much the oscillator lags behind the driving force. If oD , then  

is very small.  That’s when the driving frequency is much slower than the natural frequency – 

then the object just follows along.   At o, the argument is infinite and 2. The smaller 

 (or larger Q), the sharper the transition in the phase from 0 to 2. 

 

At the exact resonance, 22
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So the phase isn’t exactly /2 (unless 
o2 )  Again, we get a mathematical red flag that 

there is no resonance if  is big enough, but not too big, 
o2 ; the phase is imaginary 

‘at resonance.’) 

Example: (Prob. 5.42) Suppose a Foucault pendulum swings for about 8 hours before 

decreasing in amplitude by 1/e. If the length of the pendulum is 30 meter, what is the quality 

factor Q? 

Since oscillates many times, the pendulum is underdamped so the decay parameter is  and 

the amplitude decreases as e t . If it takes 8 hours to decrease by 1/e, then: 

8 hr 1, 

1 8 hr 1 hr 3600 s 3.47 10 5  Hz . 

The natural frequency of a pendulum is: 

o g L 9.8 m/s2 30 m 0.572 Hz . 

The quality factor is: 

Q o

2

0.572  Hz

2 3.47 10 -5  Hz
8.2 10 3 8000 . 

 

Finally, I want to point out that, while we’ve been explicitly considering the case of a simple 

harmonic oscillator, the ideas and results largely hold for a system of coupled harmonic 

oscillators – imagine two masses joined by a spring, or three masses joined by springs, or… 

That’s the subject of Chapter 11, which we’ll not get to in this class, but you may find interesting 

reading.  The main difference is that, for each mass you add to the system, you add a new 

resonance frequency.  Of course, this relates to the system Francis and Michael studies over the 

summer.  If you imagine adding more and more masses until eventually you can imagine a 

virtual continuum of masses joined by springs – i.e., atoms forming a string. 

Demo.  Drive oscillations on a string  


