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Announcement:  SPS Comet Observing trip with CSUSB 

Path-Independence of Work:  

The condition that the line integral of the force is path independent is equivalent to the condition 

that the line integral for any closed loop is zero as is illustrated below. In the diagram below, if 

Wa 1 2 Wb 1 2 , then W closed loop 0  because Wb 2 1 Wb 1 2 . 
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Think about what it would take for this to not be the case.  Say, on the upper branch the force 

points up and a little to the right, and on the lower branch it points down and a little to the left.  

Then positive work is done headed along the upper branch from 1 to 2 and positive work is done 

headed along the lower branch from 2 to 1 clearly those two positive works aren‟t going to add 

to 0.  Visualize that force as a function of position, it might look something like 
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That force „curls‟ around from pointing one way to pointing another – clearly the Fx depends on 

the y component of the position.   

Clearly, if a force curls around like this, then the work is path dependent, and the work done in 

traveling a closed path isn‟t necessarily 0. 

Now we‟ll make that idea mathematically concrete.  Crossing the del operator into a force would 

mean „multiplying‟ say d/dy by Fx, i.e., seeing how much the Fx component of the force depends 

on the y-component of the location; looking at the illustration above, it‟s that kind of dependence 

that characterizes „curl.‟   

So, we define  

       Ffofcurl


..  

F det

ˆ x ˆ y ˆ z 

x y z

Fx Fy Fy

 

F Fz y Fy z ˆ x Fx z Fz x ˆ y Fy x Fx y ˆ z  

(if one must, and sometimes, indeed one must, one can translate this into polar or 

spherical coordinates; see the back inside cover) 

As you might then expect, if this doesn‟t evaluate to 0, if the force has curl, then the work is path 

dependent.   

 

What you might not guess is that this operation directly relates to the closed-path work integral 

in a really simple way: from vector calculus, Stoke‟s Theorem is 

F dr F 
area enclosedclosed loop

ˆ n  dA, 

where ˆ n  is normal to the area. Those of you who‟ve already had E&M have seen this proven, 

those of you who haven‟t yet, have something to look forward to.  It‟s a fun derivation, but 

we‟ve got other fish to fry today. 

 

Taking it as a given, then if and only if the curl of a force vanishes: 

F 0, 

is the work path-independent. If the force also depends on only the position, it is conservative 

and a potential energy can be defined.  

So, let‟s play with this. 

Exercise: Which of the following is/are a conservative force? 

F a yˆ x xˆ y z2ˆ z  

F a yˆ x xˆ y z3ˆ z  
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The curls of the forces are: 

F a det

ˆ x ˆ y ˆ z 

x y z

y x z2

1 1 ˆ z 2ˆ z  

F b det

ˆ x ˆ y ˆ z 

x y z

y x z3

1 1 ˆ z 0  

The second force is conservative and the first one is not. 

4.5  Time Dependent “Potential Energy” 

The only point I want to make here is that the author unfolds this story in an unnecessarily 

mysterious way and part of that has to do with his poor choice of associating potential energy 

with a single object rather than the two interacting objects and his completely overlooking the 

step of defining his system.  The potential energy is shared by the charges on the conducing 

sphere and the distant charge and also within that system are all the interactions of the charges on 

the sphere with each other.  Looking at that system, the slow reconfiguring of the charges that 

were initially on the sphere changes the potential energy terms for their interactions with the 

distant charge, but if nothing external is interacting with the system, then the total energy in the 

system is constant.   

Alternatively, if you look at the distant charge as the system, then its interaction with the charges 

on the sphere is an external one, and thus not validly represented as a “potential energy” of the 

charge.  The external object does work on the charge, and its kinetic energy (the only kind it 

classically can have all to itself) changes. 

 

4.6 Linear 1-D Systems: 

Of course, everything‟s simpler in 1-D.  If a particle is constrained to move along a line (call it 

the x axis), work and energy are simple. The work done by a force is an ordinary integral: 

W x1 x2 Fx x
x1

x2

 dx. 

As long as a force only depends on the position x (and not velocity v or time t), it is conservative! 

If we choose U xo 0 at the reference point xo, then the associated potential energy is: 

U x Fx x 
xo

x

 dx . 

Relative to that at the reference point.  (Note: like moment of inertia, angular momentum, and 

position, potential energy values are relative.) 

(assuming that the other party to the interaction implied by that force isn‟t moving too) 

The force in 1-D is related to the potential by: 
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Fx

dU

dx
. 

Graphically, you can think of a plot of the potential energy vs. position as a “roller coaster 

track.” There will always be a force on an object in the downhill direction (see diagram below). 

 x

 U(x)

 x2 x1

 F(x2) F(x1)

 

A particle is in equilibrium if the net force on it is zero. Fx 0  when dU dx 0, which 

corresponds to a minimum or maximum of U x  vs. x. An equilibrium is stable if a small 

displacement from it results in a force back toward the equilibrium. This occurs where U x  is a 

minimum and d2U dx2 0. An equilibrium is unstable if a small displacement from it results in 

a force away from the equilibrium. This occurs where U x  is a maximum and d2U dx2 0. (A 

saddle point where dU dx 0 and d2U dx2 0 is unstable because a small displacement in one 

direction will result in a force that pushes the particle further away.) 

For a system interacting by only conservative forces, the total energy: 

E T U x  

is conserved.  

Points where U x E  are known as turning points. At these points, T 0 and v 0 .  

Interacting particle will not separate beyond this distance, to locations where U is larger, because 

conservation of energy would require that the kinetic energy be negative. Regions where 

U x E  are classically allowed and those where U x E  are classically forbidden. 

 

4.4.1 Energy diagrams 

 For the time being, this relation is most useful in that it helps us to interpret energy 

diagrams.   

 Rollercoaster Track.   

o An energy diagram is like a roller coaster track.  By just looking at a rollercoaster 

track, you can tell how the cars will move – where they‟ll speed up and where 

they‟ll slow down, and where, if it weren‟t for a chain pulling them, they would 

stop and roll backwards.  It‟s the same with a energy diagram.  Say you saw the 

following stretch of roller coaster track. 
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o Q:  If you imagine placing the cart high on the left slope, what would it do, what 

direction would it go, where would it be speeding up, where would it be slowing 

down? 

 A:  Speed-up to the right until it hits the bottom, then slow down on it‟s 

way further right until it hits the little peak, then gradually speed up as it 

goes right. 

o Q:  What is the lowest starting point on the left that would allow the cart to still 

clear the hump on the right? 

 A: Just even with the hump. 

o Potential Energy Curve.  If, instead, this curve plotted the gravitational potential 

energy of the rollercoaster (which varies proportional to elevation after all), then 

what would the Force – Potential Energy relation say? 

 On the far right, where the slope of the potential energy is strong and 

negative, what should the force be like? 

 The force is large and positive (to the right).   

 Where the slope is 0?  

 The force is 0: an equilibrium point. 

 Where the slope is positive? 

 The force is negative (to the left).  

 Moral:  Your intuition about this rollercoaster track holds perfectly for a 

plot of potential energy vs. position. 

 

  Nuclear Potential.  The potential energy of a nucleus and a proton plots like this.  If the 

proton stays near in, it is attracted by the strong force, but if it gets far enough out, the 

strong force tapers off, but it still feels the electric repulsion of all that other protons.   

 Since K + U = -mc
2
 + E and mc

2
 is generally constant and E is constant in an isolated 

system, we have that K + U is constant.   

 

 

 

 

 

 

 

 

 

 

   
04-potential-energy-well.py  Choose different K+U lines, see how the kinetic energy varies as 

the particle moves across the potential contour. 

 Bound States =  we say a particle is in a bound state if it can‟t “escape the potential 

well.”  This is the case for the protons and neutrons in nuclei.  One would require 

r 

E
n
er

g
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K+U = Const 

r2 r1 

K(r2) 
K(r1) 

K=0 K=0 
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additional energy to surmount the barrier and escape.  Similarly, any ball you can throw 

is gravitationally bound to the Earth – it will only get a few meters into the air before its 

kinetic energy comes to 0, and it falls back down again. 

 In this way, the idea of energy helps us to see what a system can and cannot do. 

 

 

 

Example 1: (Prob. 4.9) The force exerted by an ideal spring with its left end fixed is 

F x kx, where the spring is unstretched at x 0 . The parameter k is called the spring 

constant. (a) If we choose U 0 at the equilibrium, what is the corresponding potential 

energy? (b) Suppose a spring is hung vertically from the ceiling with a mass m attached to 

the other end and constrained to move vertically. If y is the displacement downward from the 

equilibrium position, find the total potential energy. 

(a) If x 0  ( x 0), the spring is stretched (compressed) exerts a force to the left (right). 

 x
 

The potential energy is: 

Uspr x Fx x 
xo

x

 dx kx 
0

x

 dx 1
2
kx2 

(b) Let xo be the equilibrium position and y be the distance from equilibrium as shown 

below. 

 xo

 y

 x = xo + y

 unstretched

 

In equilibrium, the spring force and weight must balance so kxo mg or xo mg k . The 

total potential energy is (for gravity, it decreases as the mass moves downward): 

U 1
2

kx2 mgx 1
2

k xo y
2

mg xo y  

U 1
2
ky2 kxo mg y 1

2
kxo

2 mgxo
 

U 1
2
ky2 constant 
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The constant has no physical consequence, so the behavior is the same as for a mass attached 

to a spring that moves horizontally without friction. You could define away the constant. 

Example 2: A 2-kg particle moves in one dimension under a force: 

F x bx 2c sin ax , 

where a = 1 m
-1

, b = 1 N/m, and c = 1 N. The argument of the sine is in radians. (a) Find the 

potential energy with the reference point at the origin so that U 0 0. Sketch the potential 

and show the classically allowed and forbidden regions if the total energy is E = -0.5 J. (b) 

Identify the three points of equilibrium and determine if each is stable or unstable. 

(a) The potential is found by integrating the force (with a minus sign!): 

U x F x  
0

x

dx bx 2c sin ax  dx 
0

x

, 

U x
bx 2

2

2c

a
cos ax 

0

x

bx2

2

2c

a
cos ax

2c

a
. 

The constants a, b, and c are all one and each term is in Joules when x is in meters. The graph 

below shows U x  vs. x. For large x, the x
2
 dominates the oscillating term. The dashed line 

is E = -0.5 J and the allowed (A) and forbidden (F) regions are labeled. The particle is only 

allowed to be where E U x  because E T U x  and T must be positive. 
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(b) The points of equilibrium are where F x dU dx 0 . This gives the transcendental 

equation: 

x
2c

b
sin ax  

The solution x 0  corresponds to an unstable equilibrium because d2U dx2 0. The other 

two solutions can be found approximately by making successive guesses to get x 1.896 , 

which are stable because d2U dx2 0. 
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If energy is conserved, E T U x , then: 

xUExmT 2

2
1  , 

which can be used to find the velocity as a function of position: 

xUE
m

xx
2

 . 

The velocity is dtdxx , so xdxdt  . This can be integrated to find the time for motion 

between two points: 

x

x

x

x xUE

xdm

xx

xd
t

oo
2

. 

In practice, this can be difficult to calculate because the integrand goes to infinity as it 

approaches the turning point where Ý x 0 . Even for the simple pendulum, there is no analytical 

solution (see Prob. 4.38). Energy conservation is typically not a good way to get information 

about time. 

Example 3: (2.10 of Fowles & Cassiday 5
th

 ed.) A particle of mass m is released from rest at 
x b  and its potential energy is U x k x . (a) Find its velocity as a function of position. 

(b) How long does it take the particle to reach the origin? 

(a) At x b , the kinetic energy is T 0 so the total energy is E U b k b . Since energy 

is conserved: 

xkxxmxUTbkE 2

2
1  , 

so taking the negative root because the potential attracts the particle toward the origin: 

bxm

k
xx

112
 . 

An example of this is shown below. 
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(b) Since dtdxx , the time required to move from b to 0 is: 

b

bb

t

xb

dxx

k

mb

bx

dx

k

m

xx

dx
tdt

0

00

0
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Use the integral (from the front cover of the text): 

y  dy

1 y
sin 1 y y 1 y  

with the change of variables x by  and dx b dy. The integral for the time becomes: 

t
mb

2k

by b dy

b by
0

1
mb3

2k

y  dy

1 y
0

1
mb3

2k
sin

1 y y 1 y
0

1

 

t
mb 3

2k
sin 1 1

mb 3

2k 2
 

t
mb 3

8k
 

 

 

Next two classes: 

 Monday – Curvilinear 1-D Systems & Central Forces 

 Wednesday – Multiparticle Systems 

 


