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Energy Principle, a.k.a. Work Energy Relation  

 Mathematically, here’s how the new tools are related to the old ones, using a trick that 

you’ve enjoyed a few times over the last few chapters. 
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Looking at Cartesian components of this equation 
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Similarly,  
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Or adding all three equation and rewriting the right hand side  
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Notice that the right hand side no longer reflects our intermediate step of having 

broken things into Cartesian components.  We can do something similar with the 

left-hand side, though it may help to back up a step and think of the equation just 

before integrating 

zzyyxxznetynetxnet dvmvdvmvdvmvdzFdyFdxF ...  

Now, looking at those exotic dx, dy, dz and remembering they’re just components 

of a tiny displacement vector. 

Then, we could rewrite the sum of the product of like components as simply the 

dot product 

rdFnet


 

Formally then we can write our equation as 
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3.5  Angular Momentum for multiple particles 
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Where what we really mean by the single integral is the integral over all 

three components of the object’s path, be they expressed in Cartesian coordinates, 

polar coordinates, or some other system. 

 

Of course, we call the left-hand side the Work that the net force does on the object 

while pushing it along the path from initial to final position.  We call the right 

hand side the change in kinetic energy that results.  (for reasons of its own, the 

book uses T for kinetic energy) 

 

  

( Interestingly, if you use the relativistic expression for momentum here, then you 

get the relativistic expression of energy (rest energy + relativistic kinetic).  If you 

use the classical expression for momentum, then you get the classical expression 

for kinetic energy.) 

 

 As you well know, this new representation of the interplay between Interaction (work) 

and motion (kinetic energy) will be useful.  Before we really put it to use we’ll get 

familiar with the pieces.  Continuing with a common theme in the book thus far – we’ll 

pay extra attention to actually doing the integral (which back in Phys 231 you didn’t have 

to worry too much about.) 

   

 Interaction: (Mechanical) Work   
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Review of Work 

o Quantitatively: 

 

The scalar “dot” product 

Representation 1:           Representation 2:   
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Note that in the case illustrated above, Fx is negative.  Looking at the 2
nd

 representation, the one 

in terms of Cos(), you can see that, if the two vectors are parallel to each other, you get the full 

product of their magnitudes; if they’re fully anti-parallel, you get the negative of their 

magnitudes – this is like what you’d get if you multiplied two scalars (5*3 = 15, -5*3 = -15).  

Now, if they’re completely perpendicular to each other you get 0. 

 

 

 

 Why call this mathematical tool “work”, how does it compare with our everyday 

definition?  Work – Conceptual 

o Everyday meaning:  Work is a combination of effort and achievement. 

o Ex. 

 Prof Teaches Physics, Students Learn Physics 

 Prof does + work on students 

 Prof Teaches Physics, Students Don’t Learn Anything 

 Prof does 0 work on students 

 Prof Doesn’t Teach Physics, Students Learn Physics anyway 

 Prof does 0 work on students 

 Prof Teaches Physics, Students Get more Confused about Physics 

 Prof does – work on students 

 Prof Teaches Physics, Students Learn French 

 Prof does 0 work on students 

 Mathematical Physics Definition agrees with Everyday Conceptual 

o Everyday meaning agrees with mathematical, physics meaning 

o Ex. 

 

 

 

 

 

 

 

 Rock goes up hill 

 Joe does + work on rock 

 00000. xFW rjxrj  

 Rock stays put 

 Joe does 0 work on rock 

 000000 xW rj  

 Rock rolls down hill 

 Joe does – work on rock 

 00000|)|(. xFW rjxrj  

 Rock slides sideways (Mary is pushing that way) 

 Joe does 0 work on rock 

 00000. zFW rjxrj  

Joe Pushes rock up-hill 
x̂  

ŷ  

rjF


 

zFyFxFW rjzrjyrjxrj ...  
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Path Independence. 

The line integral of the force over a path is defined as the work done by the force moving 

between points 1 and 2. This result is called the Work-KE Theorem. The work may depend on 

the path taken between the endpoints!  

Example 1: Find the work (line integrals) for F yˆ x xˆ y  moving from (0,0) to (1,1) along 

the three different paths shown below. For path b, y x2 . 

 

(a) Path a is made of two parts. Piece-wise example:  So it’s easy to see how to generalize, 

I’m going to be very systematic  / slow and plodding through this fairly simple example.  

If you have taken or are going to take our upper-level E&M course, you’ll encounter 

similar path integrals for which similar care is necessary. 
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(b) Path b now has a non-trivial relationship between its two components, y=x
2
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so far, not so very different from the previous problem, but now let’s use the way that the x 

and y components of the object’s position are related: y=x
2
, so we could mathematically 

rewrite 
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(c) Exercise: For path c, x y  so: 
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Make the substitution x y  

0  

1

0

1

0

dyydxxWc  

Exercises: For the same force, find the line integrals for paths d and e shown below. On path 

d, x y2 . 

 y

 x

 (1,1)

 (0,0)

 d
 e

 

d) You can do this just like we did path b, or we can take a very small step of abstraction and 

parameterize both x and y in terms of a new variable, u.  Path b can be described 

parametrically as 2ux  and uy  for u from 0 to 1, so duudu  2  and dudy . 
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(e) Path e is made of two parts. In the first, x 0  as y goes from 0 to 1 so dr dy ˆ y . In the 

second, y 1 as x goes from 0 to 1 so dr dx ˆ x .  So here’s the quick solution. 

We Fy 0,y
0

1

 dy Fx x,1
0

1

 dx 0
0

1

 dy 1
0

1

 dx 1. 

Example 2: A sled and load with a total mass of 80 kg is pulled with a force of 180 N at an 

angle of 20  above horizontal. The sled is initially at rest. If the coefficient of kinetic friction 
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is 0.2, what will the speed be after the sled has moved forward 5 m? (In practice, it is 

very difficult to apply a constant force!) 

  = 20

 

The force diagram for the sled (treating it as a particle) is below. 

 F T

 N 

 F f

 w 

 y

 x

  = 20

 

The sled does not accelerate in the y direction, so the size of the normal force is found from: 

N FT sin mg 0, 

N mg FT sin 80 kg 9.8 m/s2 180 N sin20 722 N. 

The size of the frictional force is Ff N 0.2 722 N 144  N . The Work-KE Theorem 

gives: 

T 1
2
mv f

2 0 Wnet Ff x FT cos20 x . 

The final speed is: 

v f FT cos20 Ff 2 x m 180 N cos20 144 N 2 5 m 80 kg 1.8 m/s. 

 

4.4 Particle Interactions:  Potential Energy 

 We introduced the idea of energy thinking that it would be just another way to quantify 

motion.  Now we’re going to stretch our definition, to quantify the potential to move or 

change identity – potential energy. 

 I asked you to read 4.9 because that supports a slightly different approach to potential 

energy – looking at it as a shared property for an interaction. 

 Potential Energy.  While mathematically very similar to work, conceptually it’s 

significantly different, and it’s the way physicists tend to conceptualize the more 
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fundamental interactions.  Therefore, we’ll spend quite some time exploring the nuances 

of Potential Energy.  

 

4.4.1 Choosing a system 

 At this point in our development of Newton’s 2
nd

 Law, we considered a system of three 

interacting particles, and used that to generalize to the Newton’s 2
nd

 Law for Systems of 

Particles.  We’ll follow a parallel path now.   

 For concreteness, say we are interested in how a gas cloud orbiting a star behaves.  We’ll 

call the gas cloud our “system” and the star (and everything else in the universe for that 

matter) “external” to our system.   

4.4.2 Interacting Energy in a Multiplarticle System 

 Maintaining a system: A word to the wise.  Like the choice of coordinate axes, 

choosing the boarder between “internal” and “external” to a system is at your 

convenience and somewhat arbitrary.  But, once you’ve made your choice in a problem, 

it is important to remain consistent; else sign errors will be introduced.  Take for example 

a ball falling to the Earth.  You could define the Ball as your system or you could define 

the Ball + Earth as your system, but, changing midstream will mess up your math. 

 Okay, imagine our “dust cloud” of three particles interacting with each other and some 

external objects (perhaps a star), and drifting through space.  Then the change in energy 

of each particle, by the Energy Principle is: 
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 Contrast with Multiparticle Momentum Principle: internal interactions matter.  It’s 

important to note that, while the forces between two masses are equal and opposite, thus 

they cancel if we simply sum up all internal forces, the work done by these forces is not 

equal and opposite, so they do not cancel.  Consider the simple case of two equal masses, 

initially at rest, gravitationally attracting each other.  They exert equal and opposite 

forces on each other and undergo equal and opposite displacements.  That means that 

they do equal work on each other.  ( rdF


)  Far from canceling, this means together, 

double the work is done!  
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 So, unlike internal forces, internal work does not cancel out.  This gives rise to a 

qualitative difference between the change in energy of a system and the change in its 

momentum.  If you recall, the momentum principle for a system of particles is 

netext
total F

dt

pd
.



.  This means that you need only worry about external forces when you 

predict how the system’s total momentum will change.  However, the energy of a system 

can be changed due to external or internal interactions.  Practically speaking, this makes 

energy much harder to keep track of.  For example, imagine two identical cars crashing 

head-on.  They come to a dead halt.  Before, there was no net momentum and there was 

plenty of obvious energy, after, there was no net momentum, and no obvious energy – 

where did it go – internal work (crumpling fenders, etc.)   

 We used a system of 3 particles in the argument above because something rather 

significant and distracting would happen for a system of just 2 particles.  Now that we’ve 

made the important point, let’s look at that special case.   
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 By the reciprocity principle, 
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4.4.2.1 Potential Energy and The Energy Principle for a Multiparticle System 

 One way of looking at the internal interactions of a system such as our three dust particles 

is as the self-contained potential to change energy.  For example, two magnets held at 

some distance have the potential to fly toward each other.  Or a boulder perched 

precipitously high above a valley floor has an almost tangible potential to come crashing 

down.  

 By a little mathematical manipulation, we can shift to the perspective in which internal 

work is reconsidered as change in potential energy, U. 
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 * Provided the work satisfies a couple of conditions, it makes sense to think in terms of 

potential. 

 Redeemable Energy.  This ‘energy of configuration’ is redeemable for 

kinetic energy upon rearrangement of the configuration.   

 *Conservative Force.  There are some criteria for the energy 

being redeemable, we often say that the force must be 

“conservative”: 

1. it only depends on the particle’s position r  (not on 

velocity, time, etc.), 

2. the work done by the force moving between any two points 

does not depend on the path. 

If these criteria aren’t met, then the concept of ‘potential’ 

energy isn’t very applicable.  An obvious place you encounter 

non-conservative forces is friction – not that energy gets 

destroyed or created, but simply rubbing something backwards 

isn’t going to put the energy back where it came from. 

  

o Conceptual difference between work and potential. 

 This may seem like a silly mathematical game to play, defining change in 

potential energy this way.  While it’s mathematically trivial, it’s 

conceptually significant; it encourages us to look at interactions and 

systems in a different way. 

 Work is something you do.  Potential is something you have.  If you have 

a work-study arrangement, this may hit home: at the beginning of the 

semester, you have the Potential to earn, say  $1,500.  Mid-way through 

the semester you have done Work, earned $1,000, and now you have the 

potential for only $500 more. Doing work reduces potential, thus the 

negative sign.  

 

o Two Particle Potential 

 Returning to our two dust particles, 

 cos212121212,12,1 rFrFWU


 

o A significant result is that the change in potential energy is negative the force 

dotted into the change in separation of the two particles.  This representation gives 

us a convenient conceptual foothold and a jumping off point for further 

mathematical developments. 

o Potential Energy is Shared.  This representation stresses that potential energy is 

a shared quantity.  We most often speak of the potential energy shared by a 

system, not of that of each individual member.  Thus, for each interaction, there is 

one shared potential term. 

 Total (system) Energy. 

o Defining the total energy of the system as the energies of the individual particles 

plus this newly christened potential energy: UEEEE system 321  



  10 

o extsystemsystem WE  

o This reads “the energy of the system changes when work is done upon it.”  

 

4.4.3 Conservation of Energy 

 Consider an isolated system, i.e., one on which no external work is being done, then 

0systemE .  We say that in this case the system’s energy is conserved. Energy may be 

transferred between parts of the system, and it may change forms (potential and kinetic) 

via internal interactions, but it is neither lost nor gained, created nor destroyed.  

 In general, if you take into consideration all objects interacting with each other, include 

them all within your system, then the energy of that group can’t change. 

 For that matter, the universe as a whole is, presumably, an isolated system (there’s 

nothing else to interact with), so the total energy in the universe is conserved. 

 Physicists like conservation laws (conservation of energy, conservation of momentum, 

conservation of charge…) for the simple reason 0’s are easy to work with.  

 

4.4.4 Changing Potential energy involves a change of configuration:  shape or size 

 We’ll make use of this relation in a few ways.  The first is getting a qualitative feel for 

the implications.   

o Consider two H atoms bound together in a H2 molecule, if they translate 

together, keeping the same separation, the same force, then the potential energy 

doesn’t change.   

o If the two particles orbit each other, like a planet around the sun in a perfectly 

circular orbit, maintaining the same separation, same magnitude of force, and 

same relative angle between the two, then no change in potential energy. 

o The particles must move relative to each other – the dimensions of the system 

must change for there to be a change in potential energy.   

o Ex.  When a bumper crumples in a collision, its internal potential energy 

changes. 

 Though easy to see for just two particles, the same basic conclusion holds for a system of 

several particles.  The potential energy of a perfectly rigid object is constant, it changes if 

the object flexes – grows, shrinks, bends. 

 Conceptualizing Potential Energy.   

o Here are two ways of thinking about potential energy.   

 Energies of Motion, Configuration, and Existence.  While Kinetic 

Energy is the Energy of Motion, Rest Energy is the energy associated with 

simply Existing, Potential Energy is the Energy of Configuration.   

 Redeemable Energy.  This ‘energy of configuration’ is redeemable for 

kinetic energy upon rearrangement of the configuration.   

 *Conservative Force.  There are some criteria for the energy 

being redeemable, we often say that the force must be 

“conservative”: 

3. it only depends on the particle’s position r  (not on 

velocity, time, etc.), 

4. the work done by the force moving between any two points 

does not depend on the path. 
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If these criteria aren’t met, then the concept of ‘potential’ 

energy isn’t very applicable.  An obvious place you encounter 

non-conservative forces is friction – not that energy gets 

destroyed or created, but simply rubbing something backwards 

isn’t going to put the energy back where it came from. 

 

Conservative Forces and Potential Energy: 

A force F  acting on a particle is conservative if: 

5. it only depends on the particle’s position r  (not on 

velocity, time, etc.), 

6. the work done by the force moving between any two points 

does not depend on the path. 

If a force is conservative, we can define the change in potential energy associated with exerting a 

force over a distance as: 

2

1

21
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r

rdrFrrWrU
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


 

Oftne there’s a convenient, universal refernc epoint for an interaction and we conventionally say 

the poentinal at a point is 

r

r

rdrFrrWrU







o

o . 

This would not be a good definition if the force was not conservative.  

 

Suppose there is just one conservative force. Substitute the definition of PE into the relationship 

between kinetic energy and work gives: 

T W r 1 r 2 U  

T U 0 . 

That means that the total energy defined as: 

E T U  

is constant. If there is more than one conservative force, there is more than one form of potential 

energy: 

E T U T U1 r Un r . 

If there are some conservative forces and some nonconservative forces, the work can be split into 

two parts: 

T W Wcons Wnc , 
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and there is a change in potential energy U  associated with the first type of work. We can 

find the change in mechanical energy: 

T U Wnc , 

E T U Wnc , 

but it is no longer conserved! If there is any work done by a nonconservative force, it changes 

the mechanical energy of a system. 

Example 3: What is the change in potential associated with the gravitational force (weight) of 

a particle of mass m moving from (0,0,0) to (x,y,z)? Choose the y axis to point vertically 

upward. Assume the force is conservative (i.e. that work by it doesn’t depend on the path). 

The force is F grav w mg , where g 0, g,0  points downward. We must find the line 

integral from the reference point (0,0,0) to an arbitrary point (x,y,z). Use the path: 

0,0,0
dr dx ˆ x 

x,0,0
dr dz ˆ z 

(x,0,z)
dr dy ˆ y 

x,y,z , 

so the line integral (in 3 segments) is: 

mgyydmgzdxdrdrFrU

yzxr

r

grav

000

  0 0

o






. 

The potential energy only depends on the height relative to the reference point. If the particle 

is above (below) the reference point, the KE is positive (negative). 

4.4.5 Force as Gradient of potential energy 

 So Force and Potential energy are related to each other via an integral: Potential is the 

Integral of Force.  We really should be able to phrase that relationship the other way 

around: Force as a Derivative of Potential.  Here’s how we go about phrasing the 

relationship that way.  Let’s back up and consider an itsy-bitsy change in the potential 

associated with changing the separation of objects just a tad. 

21212121212121122&1 dzFdyFdxFrdFdU zyx


 

 I’ll drop these subscripts to make things a little easier on the eye 

dzFdyFdxFdU zyx  

 Now, how much would the potential energy change if we only changed the x separation, 

and held the y and z separation constant?  In that case, dy=dz = 0, so we’ve just got 

dxFFFdxFdU xzyxconstzy
00

,
 

Or 

x

constzy

F
dx

dU

,

 

An shorthand notation meaning ‘hold other variables constant’ is using curved d’s: 

xF
x

U
 

We call this the partial derivative of U with respect to x.  

 Similarly, if we ask “how much will U change if we only change the y separation, or if 

we only change the z separation, we get  
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y

constzx

F
y

U

dy

dU

,

 and z

constyx

F
z

U

dz

dU
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So, then 

zFyFxFF zyx
ˆˆˆ


 

Can be rephrased as 

z
z

U
y

y

U
x

x

U
z

z

U
y

y

U
x

x

U
F ˆˆˆˆˆˆ

21


 

This (and other operations) can be written more compactly using the del operator: 

ˆ x 
x

ˆ y 
y

ˆ z 
z

, 

which is a vector operator (vector – it has components so use “arrow” notation, operator = it is 

applied to a function). The force can be written as minus the gradient of the potential energy: 

UF

Uz
z

y
y

x
x

F




ˆˆˆ

 

 

Example 4: Check that you can recover the force from Ugrav mgy . 

The force is: 

F U
U

x
ˆ x 

U

y
ˆ y 

U

z
ˆ z mg ˆ y  

which agrees with the way we defined the coordinates in Example 3. 

Example 5: If the potential energy for a particle is U crn  in spherical coordinates, what is 

the corresponding force? 

The potential can be written in terms of Cartesian coordinates as: 

U c x2 y2 z2
n 2

. 

The corresponding force is: 

F U U x ˆ x U y ˆ y U z ˆ z , 

where: 

U x c n 2 2x x2 y2 z2
n 2 1

cnx x2 y2 z2
n 2 2

cnxrn 2. 

Similarly, U y cnyrn 2
 and U z cnzrn 2

, so: 

F cnrn 2 xˆ x yˆ y zˆ z cnrn 2r cnrn 2 rˆ r cnrn 1ˆ r . 

It is easier to use the gradient in spherical polar coordinates from the back cover: 



  14 

f ˆ r 
f

r
ˆ 1

r

f ˆ 1

rsin

f
. 

Since U only depends on r, the force only has a radial component: 

F U ˆ r 
U

r
cnrn 1ˆ r . 

Exercise: Find the force associated with the potential U Ax2 Bxy Cz D. 

The corresponding force is: 

F U U x ˆ x U y ˆ y U z ˆ z , 

F 2Ax By ˆ x Bx ˆ y C ˆ z . 

Notice that the value of the constant D does not matter. 

Next two classes: 

 Friday – Conservative Forces & 1-D Systems 

 Monday – Curvilinear 1-D Systems & Central Forces 

 


