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 Equipment 

o Binary w & wo cm.py 

o Cross-product.py 

o Batton 

o Cone 

o Orbits noncircular.py 

o orbit with L.py form lab 8. 

o Integrating over a half-sphere handout 

  

 Q:  in terms of a system’s dynamics, how its motion responds to external forces, what’s 

special about its center of mass? 

o A:  This is the point that responds to forces like a particle with all the system’s 

mass. 
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 Consider a system of many particles, perhaps it is a dust cloud in interstellar space and 

each speck of dust is one of our “particles.”  On the one hand, if we focus in, we see that 

each speck is naturally at a different location, has a different mass, and is moving with a 

different velocity.  Yet, if we zoom out, we see a single cloud that behaves somewhat 

cohesively.  If we watch the cloud for a while, as it moves through space, it makes sense 

to speak of the whole as having some velocity and going from some position to another – 

in short, we can think of it as a “particle” of its own.  For that matter, if we zoom way in, 

each of our dust “particles” are themselves made of several, much tinier particles.  How 

do we reasonably do this – treat a composite of several particles, each more-or-less doing 

their own thing, as a single object and yet properly account for the internal workings?  

That’s what this chapter is about.  

 Demo:  Lab_3 binary wo cm.py You may remember writing code to simulate two stars 

gravitationally interacting.  They went looping through space weaving around each other.  
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Yet, if we call the two stars together our “system”, since there is not net external force on 

the system, the average velocity of its members must be unchanging – just a constant.  

What representative point is moving like that?  The Center of Mass 

 Demo:  Lab_3 binary w cm.py 

o Note that the center of mass is just a mathematically defined point – it’s not a 

fixed part of either object. 

o Example: Tossed Baton.  Toss a baton – if you trace the trajectory of any point, 

other than the center of mass, it follows a complicated path through space, but the 

center of mass follows the smooth arc you’d predict for a tossed point mass. 

 

 

 

 

Red = center of mass trajectory, Blue = baton end trajectory 

o Example:  Balancing a meter stick.  Gravity pulls equally on each morsel of an 

object.  If you push up on the object’s center of mass, or in line with it, then 

there’s an equal amount of mass on the left and an equal amount on the right, so 

the object falls neither way, but balances.  For this reason the center of mass is 

also known as the “center of gravity.” 

 

If we consider the mass to be distributed smoothly, instead of discretely, the sum in the 

calculation of the CM becomes an integral. The textbook gives equation (3.13): 
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(ditto for the other components) 

 

where  is the density and dV is an element of volume. The greatest challenge then is 

parameterizing the density as a function of position and making sure you set your integral limits 

appropriately. I suggest starting from the summation, not the integral form of the definition. This 

makes you to think about how to divide up an object. 
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Example 1: Find the CM of thin sheet of metal cut into a semicircle of radius R (this is 

Problem3.21 from the textbook). 

First, qualitatively:  On this drawing, roughly where should we expect the center of mass to 

be? (we’ll compare our quantitative result with this to make sure we didn’t make any math 

errors.) 

By symmetry, the CM must be on the y axis, so X 0. To find Y, we can consider slices of 

the object that have the same y coordinate (see the diagram). 
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The area of the slice is dA =2s dy , where: 
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Put the mass and y coordinate into the definition of Y:  
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Summing over all of the masses means converting this to an integral: 
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Make the change of variables q y2 and dq 2y dy : 
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Q: How does this compare with our initial guess? 

As you should expect, Y R 2 . 

 

Q: What if we set another such half disc, but with half the total mass, right on top of this one; 

where would the combined system’s center of mass be? 

The center of mass of the new half-disc would simply be R
R
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Example 2: Find the CM of a of thin wire bent into semicircle of radius R. 

First, you must choose an origin. Let’s use the “center” of the semicircle (see the diagram). 

  y 

 x   

 d   dl 

 Y=Rsin  
 R 

 R 

 

By symmetry, the CM must be on the y axis, so X 0. It is convenient to use polar 

coordinates to find Y. Consider a small segment of the wire between angles  and d . 

The length of the segment is dl R d . If M is the total mass of the wire, the mass of the 

segment is: dl R M . The y coordinate of the segments position (its small, so assume its all 

at one point) is y Rsin . Put the mass and y coordinate into the definition of Y:  
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Summing over all of the masses means converting this to an integral: 
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Q: What if the wire’s mass density varied, say 
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integral (no need to actually do the integral, though I’ve included the result here). 
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Both sums probably need to be turned into integrals 
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Integrating-over-half-circle 

No doubt, you once knew how to do this, but perhaps it’s been a while.  Since you’ll need to do 

something like this on the homework, here’s a reminder. 
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Pause and think about what max is for a given height, z: rotate things so you’re looking 

perpendicularly at the r vector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Just as a reminder that it depends upon the height, z, we’ll write max(z) 
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Now, If f doesn’t really depend upon , then you can pull it out of the  integral and build up a 

differentially thin ring of volume. 
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If f doesn’t really depend upon , then you can pull it out of the  integral and build up a 

differentially thin disc of volume. 
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Conceptual Question: 
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Example 3: A projectile of mass M is launched and explodes into two equal size pieces of 

M 2  at the top of its trajectory which is a horizontal distance D away. Suppose the two 

pieces fly apart horizontally and one piece lands a distance 1.5D from the launch site. Where 

does the second piece land? Ignore air resistance. 

Regardless of the fact that the projectile exploded, it’s center of mass will have followed the 

same parabolic trajectory.  Being familiar with that kind of trajectory, you know that if the 

peak was a distance D from the launch point, then the landing was a distance 2D. So that’s 

where the center of mass will end up. The projectile was going horizontally at the top of the 

trajectory. Since the two pieces fly apart horizontally, they will land at the same time. While 

they are in the air, the CM follows the same path as if it hadn’t exploded because the net 

external force is the total weight.  

 D

 2D

 D 2  D 2

 Path

 of CM

 

The first piece ends up a distance D 2  from the path of the CM, so the other also does. The 

means the second piece ends up a distance 2.5D from the launch site. 

This is only solvable because the pieces land at the same time! The CM doesn’t follow the 

parabolic path once either piece hits the ground because of the extra force. 

 

 

Angular Momentum 

Much of what follows is a review of what you learned in your introductory physics class (but 

may not have thought about in a long time.)  So this is here more as an opportunity for you to 

skim over than something we’re going to fully cover in class. 

Introduction. 

  “Angular Momentum” is a measure of how much angular or rotational motion 

something has (relative to a given axis.)  So, of the full momentum vector, it’s interested 

in just the component that points around the axis rather than toward or away from the 

axis. 
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o Alternatively, you might have seen it described as the full momentum times the 

distance of closest approach (if it were to stay on its present course), or the 

“impact parameter” for collisions. 

 

 

 

 

 

 

 

 

  

o Angular Momentum is going to prove a very useful tool for discussing angular 

motion like things orbiting or spinning. 

 

 Coordinate System & in & out vector representation.  Just as with regular linear 

momentum, we’d like this tool to describe not just the magnitude of motion, but also the 

direction of motion.  Since we’re talking vectors and directions, we need a coordinate 

system. Let’s define a Cartesian coordinate system with x & y in the plane parallel to the 

board and z coming out of the board at you.  I could draw the coordinate axes at a slight 

kilter like so: 

 

 

 

 

 

 

 

 But drawing an arrow like this for the z-axis doesn’t quite look like the z-axis is pointing 

straight at you, it’s pointing down & to your left a little.  So I’ll represent the z-axis with 

just the tip of an arrow, so it really looks like it’s coming straight at you.   

 

 

 

 

 

 

  

 This is a common convention for representing a vector pointing “out-of-the-page.” 

 What’s the Cartesian direction of rotation?  Now, consider a spot on a wheel laying in 

the x-y plane and spinning clockwise, relative to you (looking back along the z-axis).  At 

any given instant, the point is moving in the +x direction, the –y direction, the – x 

direction, the + y direction, and every direction in between.  Graphically it’s easy enough 

to represent the direction of rotation with a bent arrow.  If all you’re interested in is being 

able to draw a clear picture, that’s good enough.  But if you want to use that picture to 

help translate the physical world into the language of mathematics, as we do in physics, 
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we’ll have to get creative, for a bent arrow doesn’t correspond to a mathematical 

Cartesian vector, they don’t bend.  How to mathematically designate the direction of spin 

in terms of these Cartesian coordinates?  

o Where are the individual points going?  As we’ve noted, through the course of 

one full revolution, the direction of the point’s motion sweeps through all 

directions in the x-y plane.  In fact, the only direction that it never points is along 

the z-axis! 

o Where it isn’t going – axis of rotation.  So it is mathematically most concise to 

describe the rotational motion, not in terms of the directions that the particle does 

move, but the one direction that it does not – the direction of the axis of rotation, 

in this case, the z-axis. 

o Clockwise vs. Counterclockwise: + and - .  So, rather than talking about the 

direction of motion, we talk about the direction of the axis of rotation. For 

example, a wheel in the z-y plane has its (axis of) rotation along the x-axis, and a 

wheel in the z-x plane has its (axis of) rotation along the y-axis.  So we can 

concisely describe the direction of rotation in terms of the direction of the axis.  

However, say I’ve got two wheels, both in the x-y plane, one rotating clockwise 

and one rotating counter clockwise.  These clearly have opposite rotations, so it 

would be nice to say that one’s direction is + while the other’s is -, but which is 

which?   

 Right-hand rule.  Truth be told, it’s arbitrary, just like choosing whether 

to call up or down the + direction; you just need to remain consistent 

throughout your work.  But for the sake of clarity, there is a handy, or 

rather, handed convention: the right hand rule.  Take your right hand, start 

with palm open and fingers pointed in the direction of r, radially out from 

the axis toward the rotating object.  Next, contort your hand as need be so 

you can then curl your fingers in the direction that the object is moving, in 

the direction of p.  Now, your thumb points along the axis in the 

associated direction.   

 Counterclockwise: Say the wheel is spinning counterclockwise.  

At any instant, curling your fingers from the radial direction to the 

motion’s direction points your thumb along the positive z-axis. 

prLLL ,0,0,0,0


 

 Clockwise:  Say the wheel is spinning clockwise in the x-y plane, 

then curling your fingers leaves your thumb pointing along the 

negative z-axis. prLLL ,0,0,0,0


 

o To illustrate this into-the-board vector, I draw the tail end 

of an arrow – the crossed tail-feathers. 

 CW 2:  More angular momentum directions.  In this case, we, rather 

logically, referenced our motion to the center of the wheel.  Now consider, 

more abstractly, the direction of angular momentum for particle 1 and for 

particle 2 relative to point A. 
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o The direction defined to tell us which way the object is circling the axis by the 

“right-hand rule” convention: imagine grabbing the axis so that your fingers curl 

around it the way the object is moving, then your thumb points in the direction 

assigned to the angular momentum. 

 

 

The vector cross product & angular momentum 

 Now, we know how to determine angular momentum’s direction and its magnitude.  

However, the techniques we have are rather rudimentary, and not generally versatile.  For 

example, instead of having a nice simple case, say with the momentum in the x direction 

and the radial vector in the y direction, what if they pointed in some arbitrary directions, 

how then would we calculate the angular momentum and designate its direction? 

 Let’s see if we can reason out one step in this generalization and extrapolate from there. 

 

 

 

                                    = 

 

 

 

 Motion in the X-Y plane.  For simplicity, consider p and r vectors confined to the x-y 

plane.  Now, the momentum vector we have is the same as py in the y direction plus px in 

the x direction.  So, what’s the angular momentum associated with each of these?  We’ll 

then add them together to get the angular momentum associated with the total motion. 

o X-component of momentum: 

 Magnitude: Recall that prL .  Just considering the x-component of the 

momentum, then the perpendicular vector from the axis to the point would 

be y, so |Lx| = ypx. 

 Direction: and L would be in the negative z direction by our right-hand 

rule convention:  

 
xyp,0,0 . 

o Similarly, if we just consider the y-component of the momentum, then the 

perpendicular vector from the axis to the point would by x and L would be in the 

positive z direction: yxp,0,0 .   

 Then the total angular momentum, associated with the total vector p who lies in the x-y 

plane, is xy ypxpL ,0,0


. 

 Generalize to 3-D motion.  We could run through this same argument for p and r 

vectors confined to the y-z plane or to the x-z plane, and we’d get similar terms.   

o Say our momentum and position vectors were in the z-y plane instead, that would 

give rise to an angular momentum vector pointing in the x direction which we 

could reason out to be: 0,0,yz zpyp . 
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o Similarly, say the momentum and position vectors were in the z-x plane, then 

we’d get an angular momentum of 0,,0 zx xpzp . 

o Now, in the most general case, momentum and radial vectors with x, y, and z 

components: prypxpxpzpzpypL xyzxyz


,, . 

 This kind of vector multiplication is known as the vector cross-product.  

 This is the most general representation of angular momentum for a point object and, in 

lab, this is what you used to determine the orbital angular momentum of the Earth around 

the Sun.  

 

 Demo:  09_Cross-product.py  This program computes the cross-product of the red and 

green vectors, and represents it as the yellow vector.  You can see that it is always 

perpendicular to the two and that the more perpendicular they are, the large the cross-

product is. 

 Example.  Giving this a whirl, say you have a mass that, at some instant, has linear 

momentum smkgp /0,2,4


and, relative to a reference point, A, it is at mrA 0,3,5


, 

then what is its angular momentum about A?  

smkgsmkgmsmkgm

ypxpL xyA

/2,0,0/43/25,0,0

,0,0

2



 

Now, the cross-product gets magnitude and direction both correct for us.  Depending on 

how information is given to you – components or direction and magnitude, either using 

the cross product or sinprprL objaxis  with the right-hand rule will be 

simplest. 

 

 

Conservation of Angular Momentum 

Next time, we’ll see how you keep track of the angular momentum of a multi-particle system and 

we’re going to get a little more rigorous about showing what kind of interactions change a 

system’s angular momentum.  It’s pretty clear that the angular momentum of an isolated object 

remains constant – for example, consider the child running toward the merry-go-round; constant 

linear momentum meant constant angular momentum.  Beyond that though, I will simply assert 

for now that angular momentum can be conserved even in non-isolated object as long as the 

force is radial, that is, it’s along the line between the axis you’ve chosen and the object.  Put 

another way, it takes an angularly applied force to change angular momentum. That claimed, 

we’ll just get a little practice thinking about angular momentum in the simplest of systems. 

 

 

Circular Motion 

 Just from the definition of angular momentum, it’s pretty darn clear that an object 

executing uniform circular motion has constant angular momentum relative to the axis of 

rotation – neither speed nor radial distance change, so  
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Of course, as we found when first discussing uniform circular motion, it takes a constant radial 

force to drive this kind of motion.  For example, when a toy plane flies in circles, there’s a net 

force always pointing toward the center of its orbit.  

 

Planetary Orbits 

How about elliptical orbits like the Earth’s?  That too has a force that’s always 

directed toward an approximately fixed point – the sun, so the Earth’s angular 

momentum about the Sun should be constant. 

Demo: Orbit noncircular.py 

 

o Let’s see if we can reason that out.  Let’s imagine that the angular momentum is 

changing over some small instant: 
ESEESEESESE pdrprdprdLd


 

o The common approach in calculus is to look at how much it changes due to a 

small change in the first variable, and then look at the effect of a small change in 

the second variable.  We ignore the effect of both variables changing at once since 

that’s a doubly small change.   

o Now dp is in the direction of the force and the force is directed along r, back to 

the sun, so dp is parallel to r, thus their cross product is 0.  On the other hand, dr, 

the displacement is of course in the direction of that the planet is going, i.e., the 

direction of its momentum, so their cross product is 0 too! 

o 000SELd


! 

o Demo:  orbit with L.py form lab 8.  

 

o Equal Area in Equal Time. 

 

 Historically, before folks knew what made the Earth orbit the Sun, before 

we even had the vocabulary of forces, a related observation was made.  

Kepler noted that as a planet moved through the sky, the area swept out by 

the radial line between it and the sun swept out equal area in equal times.  

When the planet was far away, it moved slowly, but the radius was long, 

so it swept out a great deal of area.  When the planet was near the sun, 

though the radius was short, the planet moved quickly, so it swept out 

large are again. 

Kepler’s Law ppt. 

o Let’s look at that. 

 

 

 

 

 

 

Now, what is this area?    This can be seen in two steps.  First consider the area of a 

rectangle: 
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Now consider the parallelogram made by slicing the rectangle down a hypotenuse and 

joining the two triangles:  

  

         A=bh=b rsin

 Finally, consider splitting the parallelogram in ½, down the long diagonal.  This is the 

shape whose area we’re interested in.  Having cut it in ½, we’ve clearly cut the area in ½ too. 

 

A=1/2 bh=1/2 b rsin

 

 In our case b = v dt. So A = ½v*dt rsin v-r 

 

 Then again, L = mv r sin v-r and we’ve just reasoned that this is a constant, thus (as long 

as the planet’s mass doesn’t change and Kepler watches for equal time intervals) the 

areas are constant.   

 Thus, Kepler’s observation of equal areas implied equal angular momenta.  Furthermore, 

equal angular momenta implies a force pulling the planet to the sun.  Kepler’s 

observation helped test / prove Newton’s theory of a gravitational force. 

 

 

 

Torque 

The time rate of change of  is: 

prprpr
dt

d 



. 

The first term is zero, since pr
 || . Use the second law to write what is sometimes called the 

“rotational version of Newton’s second law”: 





Fr , 

where we define the torque r F . Numerous different symbols are used for torque! Of 

course, torque also depends on the choice of the origin. Any force directed toward or away from 

the origin produces no torque.  

Conceptual Question 

Suppose a small ball of mass m is at the end of a light string that wraps itself around a 

vertical cylinder of radius R. Using the center of the cylinder as the origin and ignore gravity. 

Is the angular momentum of the ball conserved? 

No, the position is not parallel to the force (tension) so the torque r F  is not zero. 

 r 
 F 

 

r 
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Example 4: Suppose a string of length s connects a puck on a frictionless table and an object 

with the same mass through a hole. Find the equations of motion of the puck in terms of 

polar coordinates. Can the puck be spun so that it rotates with a constant radius? 

 
 r

 s -r

 

Measuring the position of the mass below with downward positive. The second law is: 

rmrs
dt

d
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where T is the tension of the string. This makes sense because its weight tends to shorten r. 

The second law for the puck in polar coordinates gives: 
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The second equation can be rewritten as: 
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which means that the angular momentum of the puck is conserved. We also know this 

because the tension exerts no torque on the puck relative to the hole. Eliminate T from the 

other two equations to get: 
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If the initial conditions are 00r  and 00r  then the puck will remain at a constant 

radius. The second condition means: 
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No matter what, the puck will never reach the hole because its angular momentum can’t be 

constant if it does. 

 

Note: we’ll have a much more streamlined approach to such problems when we develop the 

tools of Lagrangians. 

 

 

Next two classes: 

 Monday – Angular Momentum for Systems of Particles 

 Wednesday – start Ch. 4 


