
 Phys 331 Linear Air Resistance continued: trajectories and Range 1

Email students the code

Handout / Bring:

 Computer Exercise

 Code on computers, student laptops

 Handout on 2
nd

 approximation to the range with linear drag (should have distributed last

time)

Trajectory:

We want to describe the path or trajectory of a projectile. We could just find pairs x t ,y t for

many times, but in this case we can find a function for y x .

In Vacuum Trajectory

For comparison, the equations in vacuum (with the y axis pointing upward and the same initial

conditions) are:

x t vxot ,

y t vyot
1
2
gt 2.

Solving the first for the time, t x vxo , and substituting that into the second gives a parabola:

y vyo x vxo
1
2
g x vxo

2
,

y
vyo

vxo
x

g

2vxo
2
x2 .

Note: by “completing the square” you can massage this into the form

2

peakpeak xxAyy

Where

xov

g
A

2

And (not surprisingly)

g

v

g

vv
yx ooo yxy

peakpeak
2

,
,

,

2

 (notice that xpeak is ½ the range)

Fri. 9/14 2.3 Trajectory and Range with Linear Resistance

Mon. 9/17

Tues.9/18

2.4 Quadratic Air Resistance

HW2b (2.B-.F) & Friday’s Handout

Friday, Sept. 17, 2010 2

With Linear Drag Trajectory

Recall that Newton’s 2
nd

 Law then takes the form

vbgmFnet

Now, without doing any more analytical work than that, we can computationally model the flight

of the projectile, it’s trajectory, by the Euler-Cromer method.

Break for Coding – do part (a) of the Computational Worksheet.

Proes & cons of computational modeling. The great advantage of modeling computationally

is that it’s easy to do. A disadvantage is that it must be done for specific values (you can make

this a tad better by defining ‘unitless’ parameters) so you need to run it under several conditions

to be confident of any general trends.

-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8 10

x

y

Analytical modeling.

Last time, we found the following equations for motion in a linear medium with the y axis

pointing downward:

lt

lx evtx 1o ,

y t vter,lt vyo vter,l l 1 e t l .

Friday, Sept. 17, 2010 3

If we switch the y axis around so that it points upward, the only thing that changes is the sign in

front of v ter,l . That is because switching around the y axis changes the sign in front of g in the

differential equation and

b

m

b

mg
v

l

lter,

.

The initial component of the velocity vyo must be given the appropriate sign when put in.

Therefore, the equations with the y axis pointing upward are:

x t vxo l 1 e t l ,

y t vyo vter,l l 1 e t l vter,lt .

Solve the first of these equations for t:

1 e t l x vxo l

e t l 1 x vxo l

t l ln 1 x vxo l

Substitute the first and third equation above into the equation for y to get:

y vyo vter,l l x vxo l vter,l l ln 1 x vxo l

y
vyo vter,l

vxo
x vter,l l ln 1

x

vxo l

.

Break for coding

Implement part (b) of the worksheet. Since this is an exact relation, it should be ‘right’ in that, if

the trajectories you drew by the Euler-Crommer method disagree – it’s the latter’s fault (likely

too large time steps.)

Note: while this expression is transcendental, you can get expressions for the peak of the flight:

take the derivative with respect to x, set equal to 0, and solve for the x value which satisfies, then

plug that back into this expression for the corresponding y value.

For x, you get

t

yo

yoxo

p

v

vg

vv
x

1

1
;

Friday, Sept. 17, 2010 4

which clearly reduces to the vacuum solution as b disappears and vt blows up. I leave it as an

exercise to the interested to find the expression for yp.

Horizontal Range:

The range is how far away a projectile is launched from the ground will it land, assuming the

ground is level. If the initial position is different or the ground is not level, this does not apply!

The range in vacuum Rvac is the value of x when y is zero:

0
vyo

vxo
Rvac

g

2vxo
2
Rvac

2 Rvac

vyo

vxo

g

2vxo
2
Rvac ,

so:

Rvac

2vxovyo

g
.

The range in a linear medium is found in the same way, but the equation is more complicated:

0
vyo vter,l

vxo
R vter,l l ln 1

R

vxo l

.

In fact, this is a transcendental equation, which means that it has no simple & closed analytical

solution. What we’ll aim for then is a series expansion; however, even that is hard to get.

Our approximation.

Ultimately, what we’ll be working on is an expression of the form

3

,

3

2

,

2

,

10

lter

oy

lter

oy

lter

oy

v

v
C

v

v
C

v

v
CRR …

Essentially, a Taylor expansion in terms of the ratio of y-launch speed vs. terminal speed.

Our Process for Approximating

Here’s how we’ll go about it.

1. Expand our expression in terms of
0xv

R

2. Solve for R in terms of
0xv

R
.

3. Find the approximation for when
0xv

R
is quite small.

Friday, Sept. 17, 2010 5

4. Plug that approximation for R back into our expansion keeping the next lowest order

term to find new approximate solution.

5. Return to the expression and plug this solution in for next higher-order terms

6. Find new approximate solution…

We can find an approximate solution to the problem if the air resistance is not too large. In that

case, b is small so both:

vter,l

mg

b
,

and:

l

m

b
,

are large.

Step 1: Expand our expression in terms of
0xv

R

If we define R vxo l , which must be small, then we can Taylor expand the second term in the

equation that we’re trying to solve. We will use:

ln 1 1
2

2 1
3

3 ,

and keep the first three terms to get:

0...
4

1

3

1

2

1
4

o

3

o

2

oo

,ter

o

,tero

lxlxlxlx

ll

x

ly

v

R

v

R

v

R

v

R
vR

v

vv
.

We can factor out an R, which means that R 0 is a solution (but not the one we want). Dividing

out the factor of R and simplifying the constant terms gives:

0...
432

3

4

o

3

,ter2

3

o

2

,ter

2

o

,ter

o

o
R

v

v
R

v

v
R

v

v

v

v

xl

l

xl

l

xl

l

x

y

Notice that vter,l l g, so we can clean up a little:

0...
432

3

4

o

2

2

3

o

2

oo

o
R

v

g
R

v

g
R

v

g

v

v

xlxlxx

y

.

Friday, Sept. 17, 2010 6

Step 2: Solve for R in terms of
0xv

R
.

...
2

1

3

22

...
2

1

3

22

...
43

2

2

oo

oo

3

2

o

2

2

o

oo

3

4

o

2

2

3

oo

o
2

o

xlxl

yx

xlxl

yx

xlxlx

yx

v

R

v

R
R

g

vv
R

R
v

R
vg

vv
R

R
v

g
R

v

g

v

v

g

v
R

Step 3: Find the approximation for when
0xv

R
is quite small.

g

vv
RR

yx

o

oo2

the solution we get when there is no drag.

Step 4: Plug that approximation for R back into our expansion keeping the next lowest-

order term to find next order approximation.

...
2

121

3

222
2

oo

oo

xl

yoxo

xl

yoxoyx

v

R

g

vv

vg

vv

g

vv
R

Again using vter,l lg:

l

y

l

yx

v

v
RR

g

vv
RRR

,ter

o

vac1

2

2

2

oo

vac1

3

4
1

3

8

.

It makes sense that this is less than the range in vacuum. The method of finding an approximate

solution, then using that to find a better one is called an iterative or perturbative solution.

Step 5: Plug that approximation for R back into our expression keeping the next lowest-

order term to find our next order approximation (see the handout)

Too small to keep

Friday, Sept. 17, 2010 7

vyo

vxo

vter,l

2 lvxo
2 R

vter,l

3 l

2
vxo

3 R
2 vter,l

4 l

3
vxo

4 R
3

0,

or using vter,l lg:

vyo

vxo

g

2vxo
2
R

g

3 lvxo
3
R2 g

4 l

2vxo
4
R3 0.

Isolate the single power of R:

R
2vxo

2

g

vyo

vxo

g

3 lvxo
3
R2 g

4 l

2vxo
4
R3 ,

R
2vxovyo

g

2

3 lvxo
R2 1

2 l

2vxo
2
R3.

Get the improved solution by making the substitution R R1 on the right hand side:

R R2

2vxovyo

g

2

3 lvxo
Rvac

2 1
4vyo

3vter,l

2

1

2 l

2vxo
2
Rvac

3 1
4vyo

3vter,l

3

.

R2 Rvac 1
2

3 lvxo
Rvac 1

4vyo

3vter,l

2

1

2 l

2vxo
2
Rvac

2 1
4vyo

3vter,l

3

.

R2 Rvac 1
2

3 lvxo

2vxovyo

g
1

4vyo

3vter,l

2

1

2 l

2vxo
2

2vxovyo

g

2

1
4vyo

3vter,l

3

.

R2 Rvac 1
4vyo

3vter,l

1
4vyo

3vter,l

2

2vyo
2

vter,l

2
1

4vyo

3vter,l

3

.

Keeping terms of order 1 vter,l

2
:

R2 Rvac 1
4vyo

3vter,l

4vyo

3vter,l

8vyo

3vter,l

2vyo
2

vter,l

2
.

Combine the last two terms to get:

2

,ter

o

,ter

o

vac2
9

14

3

4
1

l

y

l

y

v

v

v

v
RR .

Computer Exercise: My results are in “trajectories.xls”

Friday, Sept. 17, 2010 8

Next two classes:

 Monday – Quadratic Air Resistance

 Wednesday – start Ch. 3

Code for (a)

from __future__ import division

from visual import *

from visual.graph import *

Constants

g=9.8

b=0.1

deltab=0.05

tmax = 10

dt=0.001

rinit = vector(0,0,0)

Objects

ball=sphere(pos = rinit, p=vector(8*cos(50*(pi/180)),8*sin(50*(pi/180)),0), m=1, radius = 0.1, color=color.red)

 # the above line defines a ball with initial position (10,0,0)m,

 # initial momentum (0,0,0)kg m/s, a radius of 0.1 m, and a mass of 1 kg.

vo = ball.p/ball.m

trail=curve(color = ball.color) # This sets up the program for creating a curve which we will,

 # inside the loop below, choose to trace the path of the ball

trail.append(pos=ball.pos) # Start's tracing the ball's trail at it's initial position

print "b Computational range R(m) Drag-free range Ro(m) First-order range R1(m) Second-order range R2 (m)"

while b <2:

 t=0

 T = ball.m/b

 vter = g*T

 #Execution

 while not (ball.y<0): # Observe that the loops is reentered only as long as t<tmax,

 # so final time at which it enters will be between tmax-dt and tmax.

 F= ball.m*vector(0,-g,0)-b*ball.p/ball.m # Calculate Force using the current v

 ball.p = ball.p + F*dt # Use the force to update the momentum

 ball.pos = ball.pos + (ball.p/ball.m)*dt # Use the updated momentum to update the position

 t=t+dt # Advance the time by a step dt

 trail.append(pos=ball.pos)

Friday, Sept. 17, 2010 9

 # This sets the rate with which the loop is executed;

 # to calculate as quickly as possible, comment it out,

 # but to slow down the simulation, decrease the rate value

 b=b+deltab

 ball.pos = rinit

 ball.p = vo/ball.m

Code for (b) & (c)

from __future__ import division

from visual import *

from visual.graph import *

Constants

g=9.8

b=0.1

deltab=0.05

tmax = 10

dt=0.001

rinit = vector(0,0,0)

Objects

ball=sphere(pos = rinit, p=vector(8*cos(50*(pi/180)),8*sin(50*(pi/180)),0), m=1, radius = 0.1, color=color.red)

 # the above line defines a ball with initial position (10,0,0)m,

 # initial momentum (0,0,0)kg m/s, a radius of 0.1 m, and a mass of 1 kg.

vo = ball.p/ball.m

trail=curve(color = ball.color) # This sets up the program for creating a curve which we will,

 # inside the loop below, choose to trace the path of the ball

trailanal=curve(color = color.cyan)

trail.append(pos=ball.pos) # Start's tracing the ball's trail at it's initial position

trailanal.append(pos = ball.pos)

print "b Computational range R(m) Drag-free range Ro(m) First-order range R1(m) Second-order range R2 (m)"

while b <2:

 t=0

 T = ball.m/b

 vter = g*T

 #Execution

 while not (ball.y<0): # Observe that the loops is reentered only as long as t<tmax,

Friday, Sept. 17, 2010 10

 # so final time at which it enters will be between tmax-dt and tmax.

 F= ball.m*vector(0,-g,0)-b*ball.p/ball.m # Calculate Force using the current v

 ball.p = ball.p + F*dt # Use the force to update the momentum

 ball.pos = ball.pos + (ball.p/ball.m)*dt # Use the updated momentum to update the position

 t=t+dt # Advance the time by a step dt

 y = ((vo.y+vter)/vo.x)*ball.x + vter*T*log(1-ball.x/(vo.x*T))

 trailanal.append(pos=vector(ball.x,y,ball.z))

 trail.append(pos=ball.pos)

 # This sets the rate with which the loop is executed;

 # to calculate as quickly as possible, comment it out,

 # but to slow down the simulation, decrease the rate value

 Ro=2*vo.x*vo.y/g

 R1 = Ro*(1-4*vo.y/(3*vter))

 R2 = Ro*(1-4*vo.y/(3*vter)+(14/3)*(vo.y/vter)**2)

 print b, " ",ball.x, " ", Ro, " ", R1," ",R2

 b=b+deltab

 ball.pos = rinit

 ball.p = vo/ball.m

