
 Phys 331  Linear Air Resistance continued: trajectories and Range 1 

 

 

 

Email students the code 

 

Handout / Bring: 

 Computer Exercise 

 Code on computers, student laptops 

 Handout on 2
nd

 approximation to the range with linear drag (should have distributed last 

time) 

Trajectory: 

We want to describe the path or trajectory of a projectile. We could just find pairs x t ,y t  for 

many times, but in this case we can find a function for y x . 

 

In Vacuum Trajectory 

For comparison, the equations in vacuum (with the y axis pointing upward and the same initial 

conditions) are: 

x t vxot , 

y t vyot
1
2
gt 2. 

Solving the first for the time, t x vxo , and substituting that into the second gives a parabola: 

y vyo x vxo
1
2
g x vxo

2
, 

y
vyo

vxo
x

g

2vxo
2
x2 . 

Note: by “completing the square” you can massage this into the form 
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And (not surprisingly) 
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 (notice that xpeak is ½ the range) 

 

 

Fri. 9/14 2.3  Trajectory and Range with Linear Resistance  

Mon. 9/17 

Tues.9/18 

2.4 Quadratic Air Resistance  

 
 

HW2b (2.B-.F) & Friday’s Handout 



Friday, Sept. 17, 2010  2 

With Linear Drag Trajectory 

Recall that Newton’s 2
nd

 Law then takes the form 

vbgmFnet


 

Now, without doing any more analytical work than that, we can computationally model the flight 

of the projectile, it’s trajectory, by the Euler-Cromer method. 

Break for Coding – do part (a) of the Computational Worksheet. 

 

Proes & cons of computational modeling.  The great advantage of modeling computationally 

is that it’s easy to do.  A disadvantage is that it must be done for specific values (you can make 

this a tad better by defining ‘unitless’ parameters) so you need to run it under several conditions 

to be confident of any general trends. 
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Analytical modeling. 

Last time, we found the following equations for motion in a linear medium with the y axis 

pointing downward: 

lt

lx evtx 1o , 

y t vter,lt vyo vter,l l 1 e t l . 



Friday, Sept. 17, 2010  3 

If we switch the y axis around so that it points upward, the only thing that changes is the sign in 

front of v ter,l . That is because switching around the y axis changes the sign in front of g in the 

differential equation and  

b

m

b

mg
v

l

lter,

. 

The initial component of the velocity vyo  must be given the appropriate sign when put in. 

Therefore, the equations with the y axis pointing upward are: 

x t vxo l 1 e t l , 

y t vyo vter,l l 1 e t l vter,lt . 

Solve the first of these equations for t: 

1 e t l x vxo l  

e t l 1 x vxo l  

t l ln 1 x vxo l  

Substitute the first and third equation above into the equation for y to get: 

y vyo vter,l l x vxo l vter,l l ln 1 x vxo l
 

y
vyo vter,l

vxo
x vter,l l ln 1

x

vxo l

. 

 

Break for coding 

Implement part (b) of the worksheet.  Since this is an exact relation, it should be ‘right’ in that, if 

the trajectories you drew by the Euler-Crommer method disagree – it’s the latter’s fault (likely 

too large time steps.) 

 

 

Note: while this expression is transcendental, you can get expressions for the peak of the flight: 

take the derivative with respect to x, set equal to 0, and solve for the x value which satisfies, then 

plug that back into this expression for the corresponding y value. 

For x, you get 

t

yo

yoxo

p

v

vg

vv
x

1

1
;  
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which clearly reduces to the vacuum solution as b disappears and vt blows up. I leave it as an 

exercise to the interested to find the expression for yp. 

 

Horizontal Range: 

The range is how far away a projectile is launched from the ground will it land, assuming the 

ground is level. If the initial position is different or the ground is not level, this does not apply! 

The range in vacuum Rvac is the value of x when y is zero: 

0
vyo

vxo
Rvac

g

2vxo
2
Rvac

2 Rvac

vyo

vxo

g

2vxo
2
Rvac , 

so: 

Rvac

2vxovyo

g
. 

The range in a linear medium is found in the same way, but the equation is more complicated: 

0
vyo vter,l

vxo
R vter,l l ln 1

R

vxo l

. 

In fact, this is a transcendental equation, which means that it has no simple & closed analytical 

solution.  What we’ll aim for then is a series expansion; however, even that is hard to get.   

 

Our approximation. 

Ultimately, what we’ll be working on is an expression of the form 

3

,
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2

,
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,
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CRR … 

Essentially, a Taylor expansion in terms of the ratio of y-launch speed vs. terminal speed. 

 

Our Process for Approximating 

Here’s how we’ll go about it. 

1. Expand our expression in terms of 
0xv

R
 

2. Solve for R in terms of 
0xv

R
. 

3. Find the approximation for when 
0xv

R
is quite small. 
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4. Plug that approximation for R back into our expansion keeping the next lowest order 

term to find new approximate solution. 

5. Return to the expression and plug this solution in for next higher-order terms 

6. Find new approximate solution…  

 

We can find an approximate solution to the problem if the air resistance is not too large. In that 

case, b is small so both: 

vter,l

mg

b
, 

and: 

l

m

b
, 

are large.  

 

Step 1: Expand our expression in terms of 
0xv

R
 

 

 

If we define R vxo l , which must be small, then we can Taylor expand the second term in the 

equation that we’re trying to solve. We will use: 

ln 1 1
2

2 1
3

3 , 

and keep the first three terms to get: 
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We can factor out an R, which means that R 0 is a solution (but not the one we want). Dividing 

out the factor of R and simplifying the constant terms gives: 
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Notice that vter,l l g, so we can clean up a little: 
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Step 2: Solve for R in terms of 
0xv

R
. 
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Step 3: Find the approximation for when 
0xv

R
is quite small. 

g

vv
RR

yx

o

oo2
  

the solution we get when there is no drag. 

Step 4: Plug that approximation for R back into our expansion keeping the next lowest-

order term to find next order approximation. 
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Again  using vter,l lg: 
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It makes sense that this is less than the range in vacuum. The method of finding an approximate 

solution, then using that to find a better one is called an iterative or perturbative solution. 

Step 5: Plug that approximation for R back into our expression keeping the next lowest-

order term to find our next order approximation (see the handout) 

 

Too small to keep 
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vyo
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2 lvxo
2 R
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2
vxo
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2 vter,l
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vxo

4 R
3
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or using vter,l lg: 
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2
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4
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Isolate the single power of R: 

R
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3
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4
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R
2vxovyo

g
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2
R3. 

Get the improved solution by making the substitution R R1 on the right hand side: 

R R2
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g
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Keeping terms of order 1 vter,l

2
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Combine the last two terms to get: 
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Computer Exercise: My results are in “trajectories.xls” 
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Next two classes: 

 Monday – Quadratic Air Resistance 

 Wednesday – start Ch. 3 

Code for (a) 

from __future__ import division 

from visual import * 

from visual.graph import * 

 

# Constants 

g=9.8 

b=0.1 

deltab=0.05 

tmax = 10 

dt=0.001 

rinit = vector(0,0,0) 

 

# Objects 

ball=sphere(pos = rinit, p=vector(8*cos(50*(pi/180)),8*sin(50*(pi/180)),0), m=1, radius = 0.1, color=color.red) 

                        # the above line defines a ball with initial position (10,0,0)m,  

                        # initial momentum (0,0,0)kg m/s, a radius of 0.1 m, and a mass of 1 kg. 

vo = ball.p/ball.m 

trail=curve(color = ball.color)     # This sets up the program for creating a curve which we will, 

                                    # inside the loop below, choose to trace the path of the ball 

trail.append(pos=ball.pos)  # Start's tracing the ball's trail at it's initial position 

 

print "b Computational range R(m) Drag-free range Ro(m) First-order range R1(m) Second-order range R2 (m)" 

while b <2: 

    t=0 

    T = ball.m/b 

    vter = g*T 

 

    #Execution               

    while not (ball.y<0):               # Observe that the loops is reentered only as long as t<tmax, 

                            # so final time at which it enters will be between tmax-dt and tmax. 

        F= ball.m*vector(0,-g,0)-b*ball.p/ball.m    # Calculate Force using the current v  

        ball.p = ball.p + F*dt                      # Use the force to update the momentum 

        ball.pos = ball.pos + (ball.p/ball.m)*dt    # Use the updated momentum to update the position 

        t=t+dt                                      # Advance the time by a step dt 

        trail.append(pos=ball.pos) 
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                                      # This sets the rate with which the loop is executed; 

                                                # to calculate as quickly as possible, comment it out, 

                                                # but to slow down the simulation, decrease the rate value 

   

    b=b+deltab 

    ball.pos = rinit 

    ball.p = vo/ball.m 

 

Code for (b) & (c) 

from __future__ import division 

from visual import * 

from visual.graph import * 

 

# Constants 

g=9.8 

b=0.1 

deltab=0.05 

tmax = 10 

dt=0.001 

rinit = vector(0,0,0) 

 

# Objects 

ball=sphere(pos = rinit, p=vector(8*cos(50*(pi/180)),8*sin(50*(pi/180)),0), m=1, radius = 0.1, color=color.red) 

                        # the above line defines a ball with initial position (10,0,0)m,  

                        # initial momentum (0,0,0)kg m/s, a radius of 0.1 m, and a mass of 1 kg. 

vo = ball.p/ball.m 

trail=curve(color = ball.color)     # This sets up the program for creating a curve which we will, 

                                    # inside the loop below, choose to trace the path of the ball 

trailanal=curve(color = color.cyan) 

trail.append(pos=ball.pos)  # Start's tracing the ball's trail at it's initial position 

trailanal.append(pos = ball.pos) 

 

print "b Computational range R(m) Drag-free range Ro(m) First-order range R1(m) Second-order range R2 (m)" 

while b <2: 

    t=0 

    T = ball.m/b 

    vter = g*T 

 

    #Execution               

    while not (ball.y<0):               # Observe that the loops is reentered only as long as t<tmax, 



Friday, Sept. 17, 2010  10 

                            # so final time at which it enters will be between tmax-dt and tmax. 

        F= ball.m*vector(0,-g,0)-b*ball.p/ball.m    # Calculate Force using the current v  

        ball.p = ball.p + F*dt                      # Use the force to update the momentum 

        ball.pos = ball.pos + (ball.p/ball.m)*dt    # Use the updated momentum to update the position 

        t=t+dt                                      # Advance the time by a step dt 

        y = ((vo.y+vter)/vo.x)*ball.x + vter*T*log(1-ball.x/(vo.x*T)) 

        trailanal.append(pos=vector(ball.x,y,ball.z)) 

        trail.append(pos=ball.pos) 

                                      # This sets the rate with which the loop is executed; 

                                                # to calculate as quickly as possible, comment it out, 

                                                # but to slow down the simulation, decrease the rate value 

    Ro=2*vo.x*vo.y/g 

    R1 = Ro*(1-4*vo.y/(3*vter)) 

    R2 = Ro*(1-4*vo.y/(3*vter)+(14/3)*(vo.y/vter)**2) 

 

    print b, "    ",ball.x, "        ", Ro, "       ", R1,"       ",R2      

   

    b=b+deltab 

    ball.pos = rinit 

    ball.p = vo/ball.m 


