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1.5,.7 Newton’s 3rd & Polar Coordinates 

2.1-.2  Air Resistance - Linear  

  

2.3  Trajectory and Range with Linear Resistance 
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Homework Hint:  1.D from section 1.6. 

You want to know the maximum launch angle for a projectile to follow a path whose distance 

from the launch point / origin is ever growing (in contrast, shooting something almost straight up 

makes it start out getting further away, but then it starts coming closer again.)  So, you’ll want to 

develop an equation for the range of the projectile (actually, the square of the range is easier) in 

terms of launch angle and t.  Since you want range to always grow with time, you want its 

derivative with respect to time to never change from + to -, as long as the projectile is in flight.  

Another way of saying that is if you set this relation equal to 0 and then solve for the time at 

which that happens (so the time at which the projectile does turn around and starts coming closer 

again), you’ll find that your expression depends on the launch angle in such a way that if  is too 

large, then your expression for t becomes nonphysical (like, a negative under a square root).  So 

the angle at the threshold of that happening is the maximum launch angle for which there is no 

time at which the projectile would start coming closer to you.  Enjoy 

 

Section 1.7    

Motivation.  In general, a wise choice of coordinate systems makes it easier to do the math of a 

problem.  Sometimes, that’s as simple as rotating a Cartesian coordinate system to align with the 

slope of a plane (as we did last time) rather than aligning with gravity.  Sometimes it’s choosing 

polar rather than Cartesian coordinates.  For example, when a ball is flying through the air, we 

usually choose a Cartesian coordinate system because then the graviatational force is always and 

purely in the –y direction, and never in the x.  That makes the x-component equations 

particularly simple.  Then again, if we’re dealing with the Earth flying around the Sun, choosing 

polar coordinates would mean the gravitational force is always in the –r direction which makes 

the  component equations particularly simple.  It’s all about making it easier to solve a problem.  

Introduction: Cartesian vs. Spherical Coordinates. 

 Expressing something’s location in Cartesian coordinates is like saying “Take 3 paces 

due East, and 4 paces due North.” 

 

 

 y 

 x 

 P 

 

 

 Last time: Equation of Motion in Cartesian coordinates under constant force 
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o We brushed up on using the equation of motion,  

 rmvmamF 
 

o in Cartesian coordinates; that is, when it’s convenient to speak of all vector 

quantities in terms of their x, y, and z components. 

o Under a constant force, this lead to equations like 

 xmFx
 , txxx o

 , 
2

2
1 txtxxx oo
  and their counterparts in 

the y and z direction.  (Eq’ns 1) 

 One reason for the relative simplicity of these expressions is that the 

directions themselves, yx


, , and z


, are constants. 

 

This time: Equation of Motion in Polar 

 Alternatively, when telling someone where something is, you could say “take 5 paces 53° 

North of East.  That is, you can say how far away, and in what direction.  That is 

speaking in terms of Polar (or spherical) coordinates. 

 

 r
 y

 x

 P

 

 You translate between these two expressions of position by using familiar trig functions 

and Pythagorean’s Theorem: 

         Cartesian  Polar 

 
x rcos

y rsin

r x 2 y 2

tan 1 y x
 

 Similarly, you could specify velocity not in terms of its x and y components, but in terms 

of its magnitude, i.e., speed, and direction.  In the examples that we looked at last time, 

we translated between knowing the speed and direction of vo to its x and y components so 

we could then tackle the problems in the convenient Cartesian coordinates.  Now, what 

was convenient about those coordinates was that gravity pointed in a constant Cartesian 

direction – down, and the normal force pointed in a constant Cartesian direction – 

perpendicular to the plane. 

 What if you’ve got a force that points toward a point rather than in a direction – for 

example, the tension in a string that tethers a ball?  Then it might be convenient to work 

the problem in Polar coordinates.  We’re going to derive and use the equivalent of 

Equations 1 for polar coordinates.  As you’ll see, they’re a bit messier. 
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 Derivatives of Cartesian position vectors.  Suppose we want to write the position 

vector for a point. When using Cartesian coordinates, a vector is described by two 

constant unit vectors ˆ x  and ˆ y . These are in the same direction regardless of where the 

point is. 

      

 

 r 1  y1 

 x1  ˆ x  

 ˆ y  

  

 

 r 2 
 y2 

 x2 
 ˆ x  

 ˆ y  

 

r xˆ x yˆ y  

 So, as an object moves from one point to another over time, the component directions 

remain constant:  

y
dt

dy
x

dt

dx

dt

rd
ˆˆ



  And      y
dt

yd
x

dt

xd

dt

rd
ˆˆ

2

2

2

2

2

2 

 

In Polar coordinates, we’re not so fortunate. 

 

For plane polar coordinates, we will define the unit vectors ˆ r , which is in the radial direction, 

and ˆ , which is perpendicular and points in the direction the point would move if  were 

increased. These are shown in the diagram below. 

 

 1 

 r 1 

 y 

 x 

 ˆ r 1 
 ˆ 

1 

 | r 1| 

                     

 

 2 

 | r 2| 

 y 

 x 

 ˆ r 2  ˆ 
2 

 

Clearly, these unit vectors change as the point moves! The unit vector ˆ r  points in the direction of 
r  and has a length of one, so it can be expressed as: 

ˆ r 
r 

r 

r 

r
 

That means the position vector is: 

r rˆ r , 

And ˆ  is the direction perpendicular to that.   
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Now,    r
dt

rd
rrr

dt

rd
r

dt

dr

dt

rrd

dt

rd ˆ
ˆ

ˆ
ˆ

ˆ




 

 What is 
dt

rd ˆ
?  Well, what’s just rd ˆ  ?  the little ‘hat’ over top of r


may make it seem 

rather mysterious, but just think of it as a vector who happens to have length 1. 

 

 d  

 d  

 ˆ t1  

 ˆ t2  

 ˆd  

 ˆ r t1  

 ˆ r t2  
 rdˆ  

 

You may recall that an arc length is equal to the associated angle (measured in radians) times the 

radius, so the arc length that gets between the initial and final locations of the r


tip would be 

ddrds 1


 (last step since 1r


. 

To the extent that the angle change is infinitesimal, then the arc length is essentially equal to the 

straight path between the two points:  

ddsrd 1


 

As for the direction of rd ˆ ,  notice that it’s virtually parallel to the 


 unit vectors; and, again, to 

the extent that the change in angle is infinitesimal, it is parallel to  


, so that’s the direction.  So, 

finally, we have reasoned out that  


drd ˆ  

Putting that into our expression for the velocity, 







rrrr

r
dt

d
rrr

ˆ

ˆ
 

Angular speed: you probably recognize 
dt

d
as the “angular speed” or 

“angular frequency,” often denoted 
dt

d
, which tells us how 

frequently an object orbits or spins around. 

So the rate with which the object is moving radially in and out from the origin is 

rvr
  

And the rate with which the object moves angularly about the origin is 

  rv , or in possibly more familiar notation, r . 
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Now for the second derivative, acceleration, 

  

dt

d
rrr

dt

rd
rrrr

dt

d
r

dt

d
r

dt

dr

dt

rd
rr

dt

rd
r

r
dt

d
rr
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d
r





















ˆ
ˆ

ˆ
ˆ

ˆ

 

Now, we’ve already figured out that 


drd ˆ , so we can substitute that 

in, but what is ˆd ?  Looking back at our picture,  

 

 

 

 

 d  

 d  

 ˆ t1  

 ˆ t2  

 ˆd  

 ˆ r t1  

 ˆ r t2  
 rdˆ  

 

 

We can see that a very similar thing is happening with ˆd  as with rd ˆ .  

Thinking about the arc traced out as the ˆ  vector rotates from its initial to 

its final position,… 

dddsd 1


 

Now, this change vector points virtually anti-parallel to the  r̂  vectors, so 

its direction is - r̂ .  So we have 

rdrdd


 

Plugging this, and our expression 


drd ˆ , into the acceleration expression gives 
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






















rrrrrr

rrrrrrrr

r
dt

d
rrr

dt

d
rrrr

2ˆ

ˆˆ

ˆˆ

2

2

 

Or, recasting this in terms of angular speed,  , and angular acceleration,  , 

   





rrrrra 2ˆ2
 

   

 

 

 

                                        2 rrar      rra 2  

Now that we have expressions for position, velocity, and acceleration in terms of polar 

coordinates, we’re ready to consider applying Newton’s 2
nd

 law. 

 

 

 

The net force can be resolved into r


 and ˆ  components: 

ˆˆ

ˆˆ

marmaF

FrFF

r

r





. 

 

Therefore, in plane polar coordinates Newton’s second law is: 

2 rrmFr , 

 rrmF 2 . 

So, depending on how an object’s already moving, a given force can affect its motion differently.  

For example, consider a ball tethered to point by an elastic string; if the ball’s initially just 

moving radially out, then the force of the string radially back just causes the ball to slow down 

and eventually start coming back. 

    rmFr
  

 Then again, if the ball were initially moving tangentially and not radially at all, then the 

exact same force could be responsible for it to orbit at a constant radius 

    
2rmFr  

Speeding/slowing going in and out Speeding/slowing rotating 

Simply rotating Going in & out 

while rotating 
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Example: A small coin is set on a turntable at a distance R from the center. At time t 0, the 

turntable starts accelerating with a constant angular acceleration  . If the coefficient of 

static friction between the coin and the turntable is s, how much time will pass before the 

coin starts to slip? 

Let’s think before we dive in.  It’s through friction that the turn table drags the coin along – 

forces the coin to accelerate along with the turn table.  However, static friction can only grow 

so large before breaking and letting the coin slip: 

      NF fr  

Where N is the normal force with which the coin presses into the surface of the turn table; 

given that this is on the level, that should be balancing the coins weight, so  

   N = mg   so  mgF fr  

We want to know at what time, t, the friction force hits its limit while forcing the coin to 

accelerate with the spinning turntable. 

               )(tammgF fr  

It’s going to be easiest to consider this in polar coordinates since, up to this moment of 

slipping, the distance from coin to origin (center of turn table) is constant. 

      22 aaa r  

     
2 rrar      rra 2  

 

     So these simplify to 

     
2Rar       Ra  

So, how does the angular speed change with time?  Well, the angular acceleration of the 

turntable is constant at: 

 , 

so its angular speed grows linearly with time: 

tt . 

(note: the relationship between  and  is the same as that between v and a) 

Putting all this together, 

     
222

RtRtag )(  

Then solving for the time at which this equality holds, 

2t 4 1 g R
2
 

t
1

g R
2

1
1 4

 

0 0 
R 
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Reasonability Check. It’s always good to pause and check that your final answer seems 

reasonable.  Let’s do that: 

Units - The angular acceleration  is in radians/s
2
, so the units work out (radians are “non-

units”).  

Logic - The bigger  is, the shorter the time is. The larger the distance from the center, R, the 

shorter the time is. If the term in the square brackets is negative, g R 1, then the coin 

will start to slip immediately. That’s because the static friction is not as big as F mR . 

 

A note about Cylindrical Coordinates.  In this chapter we pretty much stayed 2-D.  Looking 

ahead, we’ll certainly get into 3-D situations too.  Depending on the symmetry of the problem, 

spherical or cylindrical coordinates might be best.  Since the polar to cylindrical jump is pretty 

easy, I’ll point it out now. 

The z component of a point P  is the same as in Cartesian coordinates. Also, the unit vector ˆ z  is 

constant. If P  is the projection of the point in the xy plane, then the coordinates  and  are 

defined like r and  were above. The name of one of the coordinates changes because: 

r ˆ zˆ z . 

 

 

 

 

 

 Then, we translate everything we’d said about r in 2-D to being about  and tack on the z 

term. 

 

zzv ˆˆ 





 

zza










22

 

 

In general, problems in polar coordinates are fairly difficult to handle using Newton’s Second 

Law. However, they are easier to handle with Lagrangians (Ch. 7). 



z
r


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Coming up next: 

A common class of force problems – ‘projectile motion’ in a constant field (gravitational, 

electric, or magnetic) 

Next two classes: 

 Wednesday – Air Resistance 

 Friday – Linear Air Resistance 

 


