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Wed. 9/5 

Thurs 9/6 

Fri. 9/7 

1.1-.3 Intro to Mechanics & to Computation in Mechanics 

 

1.4,.6 Mass, Force, Newton’s 1st & 2nd. 

 

HW0 (Computational Exercise) 

Mon. 9/10 

Tues 9/11 

Wed. 9/12 

Thurs. 9/13 

Fri. 9/14 

1.5,.7 Newton’s 3rd & Polar Coordinates 

 

2.1-.2  Air Resistance - Linear   

 

2.3  Trajectory and Range with Linear Resistance 

 

HW1 (1.A-.G) 

 

HW2a (2.A) 

 

 

Materials: 

 White boards 

 Group Problem 

 Python Code – go over modifications 

 

Newton’s Laws: as they apply to a point mass or particle 

1. Newton’s 1
st
.  In the absence of forces, a particle moves with constant velocity v . 

 The velocity is constant in both magnitude and direction. 

 This defines an inertial frame, which is a reference frame in which this law holds. 

 A frame in which this does not hold in a noninertial frame (e.g. accelerating or 

rotating relative to an inertial frame – see Ch. 9). 

2. Newton’s 2
nd

.  For any particle of mass m, the net force F  on the particle is always equal 

to the mass time the particle’s acceleration: F ma . 

 The net force is sometimes written as F net  or F  to emphasize that it is the sum of all 

forces 

 This is a vector equation! Don’t treat it like a scalar unless the problem is 1-D. 

 It is a second order differential equation. 

 We can introduce dot notation for time derivatives: 

r
dt

rd
v

dt

vd
a 







2

2

 (and r
dt

rd
v 




) 

 So, Newton’s 2
nd

 can be written as rmFnet



 where, of course, the force itself is apt 

to be a function of time, position, and velocity.  

 If we define the particle’s momentum as p mv , then the Second Law can be 

rewritten as pF 


, which is sometime convenient. 

3. Newton’s 3
rd

.  If object 1 exerts a force F 21 on object 2, then object 2 always exerts a 

reaction force F 12  on object 1 given by: F 12 F 21. 

 The reaction force is equal in magnitude, but in the opposite direction. 

 A force and the associated reaction force always act on different objects, so they do 

not cancel. 
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 I like to think of this as saying when two objects share and interaction, they have 

equal and opposite perspectives on it – ‘you’re pulling me left’, ‘no, you’re pulling 

me right.’ 

 Completely Tangential to our subject, but of some general interest:  Break-down.  

The book points out that, as intuitive as this may be, when the two parties can’t even 

agree on times and distances, they’re not bound to agree about their shared 

interactions either, that is, when relativistic speeds are involved.   

a. The book’s discussion leads to the right moral, but it gives an erroneous 

impression that the magnetic force is unique in this.  The magnetic interaction 

is the most obvious case, but the same thing happens with the electric force 

when the two charges are in motion – Griffith’s equation 10.67 shows how the 

force depends on velocity and acceleration, and it isn’t symmetric between the 

two charges that are interacting.  The same must be true of gravitation and, I 

bet it happens with the strong force.  The effect is significant only when 

speeds are near c. 

b. In all cases, the central issue is a relativistic one – different observes going at 

different speeds will measure the duration of an interaction and the distance of 

which it occurs differently, so they’ll disagree about the forces.  So, it’s not so 

much that Newton’s 3
rd

 Law breaks down as it is that the agreement about 

space & time measurements, upon which it’s predicated, breaks down. 

c. There are two fixes to the problems this causes for conservation of 

momentum:  

i. In special relativity we refine our defition of momentum 

ii. With field-mediated interactions we extend our definition to include 

what I think of as “potential momentum” (in the same spirt as we have 

potential energy.) 

 Conservation of Momentum: (see  ppt) 

 Suppose two particles interact with each other and are each acted on by external 

forces as shown below. 

 

 F 2
e xt  F 1

e xt

 F 21

 F 12

 1

 2

 

 Newton’s second law for each particle is: 

 extFFFp 11211


  

 extFFFp 22122


  
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 We can define the total momentum on the to particles: 

 P p 1 p 2 . 

 The rate of change of the total momentum is: 

 
21 ppP 
. 

 Using the second law and the third law, F 12 F 21, gives: 

 extextextextext FFFFFFFP


21221112
. 

 The change in the total momentum is equal to the total external force on the particles 

(the vector sum of the external forces on each particle). 

 This leads to the Principle of Conservation of Momentum:  

 If F ext 0, then P constant. 

 The same result holds for systems with any number of particles, where the total 

momentum is: 

 P p , 

 and the total external force on the system is: 

 F ext F ext . 

 Any force between a pair of particles in the system is an internal force. We will look 

at conservation of momentum again in Chapter 3. 

 

 

Differential Equations: 

As we said, Newton’s 2
nd

 law is a differential equation; depending on the functional dependence 

of the net force, we’ll apply different mathematical techniques to solving Newton’s 2
nd

.  

Differential equations vary widely in difficulty. We already covered numerical solutions (Euler-

Cromer Method) for those that we can’t or just don’t want to solve analytically.  When the 

dependence on different variables can be brought to separate sides of an equation, the differential 

equation can be integrated. 

Example: Constant Force F0 in one dimension (call it x) 

This is the easiest example and the results should be familiar from PHYS 231.  

Newton’s Second Law can be rewritten as (a scalar equation): 
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Rephrasing that, we have 
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Position & velocity dependent forces.  In general, a force on a particle can depend on the time, 

its position, and its velocity. You will do the case of force in one dimension that depends on the 

position (2.12) for HW#1. Velocity dependent forces are the topic of Chapter 2. 
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Newton’s Second Law in Cartesian Coordinates 

In Cartesian coordinates, the Second Law, rmF 


, is equivalent to three equations (one for each 

component):   

zm

ym

xm

F

F

F

rmF

z

y

x










 

Much of General Physics I (PHYS 231) is spent on problems with constant forces, especially 

gravity. You will do a few problems (1.36, 1.38, 1.40) to refresh your memories. Comments: 

 In the textbooks notation, g 9.8 m/s2  and g  is a vector that points downward (what 

“downward” is in terms of your coordinate system depends on your choice of 

coordinates).  

 It is often helpful to choose the coordinates so that the acceleration in one or two 

component directions is zero.  

Example: An ice cube is kicked with an initial speed v0 5 m/s straight up a ramp with 

slope of 30  and height h 20 cm . If friction and air resistance can be ignored, how 

far from the end of the ramp does the ice cube land? 

Draw picture, and then Ask them for some ideas on strategy, tools, etc. 

Just using force (not energy too – like fighting with one hand behind our backs) 

Solution: This problem is essentially two dimensional, since there is no force to the side. 

It must be divided into two parts: (1) find the speed of the ice cube at the top of the ramp 

(the direction of the velocity is still along the ramp) and (2) find how far it travels in the 

air. 

(1) For the motion on the ramp, it is convenient to choose coordinates with x upward 

along the ramp and y perpendicular to the ramp with the origin at the initial position 

of the ice cube. With this choice, Ý Ý y 0 because the ice slides along the ramp. 

 

 

 y
 x

 

 h

 N 

 w 

 

 

The two forces on the ice cube, the weight and the normal force, are drawn in the 

diagram above. The weight of the ice is w mg , where in the chosen coordinates 

g gcos , gsin . Newton’s Second Law for the two components is: 

? 
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sinmgxm    and  Nmgym cos0  

Integrating the first equation once gives: 

sinsin
0

0

0

gttdgvtxxd

ttx

v




 

Ý x t v0 gtsin . 

Integrate again to get: 

dx 
0

x t

x t v0 gt sin  dt 
0

t

v0t
1
2
gt2 sin  

Define the time the cube reaches the top of the ramp as t1 and the speed there as v1. 

The x coordinate of that point is x1 h sin , so 

h sin v0t1
1
2
gt1

2 sin  

1
2
gsin t1

2 v0 t1 h sin 0 

The solution to this quadratic equation is: 

t1
v0 v0

2 4 1
2
gsin h sin

2 1
2
gsin

 

t1
v0 v0

2 2gh

gsin

5 m/s 5 m/s
2

2 9.8 m/s2 0.2 m

9.8 m/s2 sin30
 

t1 0.0834 s, 1.957 s. 

The smaller solution corresponds is the desired solution. The other corresponds to the 

time it would take the cube to slide back down to that point if the ramp was long. At 

the top of the ramp, the speed is: 

Plug in symbolically rather than numerically, that gives ghvv o 22

1 which is 

exactly what we’d get (more easily) using an energy approach. 

v1 v0 gt1sin 5 m/s 9.8 m/s2 0.0834 s sin30 4.59 m/s 

(2) For the second part of this problem it is more natural to use coordinates with x 

horizontal and y vertical. Choose the origin at ground level below the edge of the 

ramp. 

 y

 x 
 h
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With the new coordinates, g 0, g . Since the only force in the air is the weight, 

Newton’s Second Law for the two components is: 

0xm    and  mgym  . 

The initial conditions for the ice are r o 0,h  and v o v1 cos ,v1 sin . Integrating 

the equations above twice gives: 

cos1vtx   and  gtvty sin1
  

x t v1tcos   and  y t h v1t sin 1
2
gt2 

Define the time t2 when the ice hits the ground at y 0, which is given: 

0 h v1t2 sin 1
2
gt2

2 

The solution to this quadratic equation is: 

t2

v1 sin v1 sin
2

4 1
2
g h

2 1
2
g

v1 sin v1 sin
2

2gh

g
 

t2

4.59 m/s sin30 4.59 m/s sin30
2

2 9.8 m/s2 0.2 m

9.8 m/s2
 

t2 0.687 s, 0.219 s 

The positive solution is the physical one for this problem, so the distance from the 

ramp when the ice lands is: 

x t2 v1t2 cos 4.59 m/s 0.687  s cos30  

x t2 2.73 m . 

Group Problem: is this a problem I assigned (by another name?)(1.39) A golf ball is 

hit with initial speed vo  up an inclined plane. The plane is inclined at an angle  above 

the horizontal, and the ball’s initial velocity is at an angle   above the plane. Choose 

axes with x measured up the slope, y normal to the slope and z across it. (a) Draw a 

diagram of the situation including coordinate axes and angles. (b) Ignore air resistance. 

Write down Newton’s second law using these axes and find the ball’s position as a 

function of time. (c) Show that the ball lands a distance R 2vo

2 sin cos gcos2  

along the slope. (d) Show that for given vo  and , the maximum possible range up the 

inclined plane is Rmax vo

2 g 1 sin . 

Hint: Parts (c) and (d) will require some trigonometric identities. See the front cover of 

the book. 

Solution:  

(a) This is essentially a 2-D problem. 
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 y

 x

 
 

 v o

 g 
 

 

(b) The weight of the ball is w mg , where in the chosen coordinates 

g gsin , gcos . Newton’s Second Law for the two components is: 

sinmgxm    and  cosmgym   

Integrating these equations twice with the initial conditions are r o 0,0  and 

v o vo cos ,vo sin  gives: 

sincoso gtvtx   and  cossino gtvty  

x t vot cos 1
2
gt2 sin   and  y t vot sin 1

2
gt2 cos  

(c) The ball lands when y 0, so 

0 vot sin 1
2
gt2 cos t vo sin 1

2
gtcos , 

which has solutions t = 0 and the desired solution: 

t
2vo sin

gcos
. 

Plug that time into x t  to find the distance along the slope to where the ball lands is: 

R vo

2vo sin

gcos
cos 1

2
g

2vo sin

gcos

2

sin  

R
2vo

2 sin

gcos2
cos cos sin sin  

Use the trig identity cos cos cos sin sin  to get the desired result: 

R
2vo

2 sin cos

gcos2
. 

(d) Maximize the range with respect to : 

dR

d
0

2vo

2

gcos2

d

d
sin cos , 

so: 

0
d

d
sin cos cos cos sin sin , 

Using the same identity as in part (c) gives: 
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cos 2 0. 

The angle of the slope must satisfy 2 and the other angles must satisfy 2 or 

the ball is not going up the slope, so the appropriate solution is: 

2 2  

4 2. 

Substitute this into the result from part (c): 

Rmax

2vo

2 sin 4 2 cos 4 2

gcos2

2vo

2 sin 4 2 cos 4 2

gcos2
. 

Use the trig identity sin AcosB 1
2

sin A B sin A B  to get: 

Rmax

2vo

2

gcos2

1

2
sin 2 sin

vo

2

gcos2
1 sin . 

Multiply and divide by 1 sin  and simplify to get the desired result: 

Rmax

vo

2

gcos2
1 sin

1 sin

1 sin

vo

2

gcos2

1 sin2

1 sin

vo

2

g 1 sin
. 

Next two classes: 

 Monday – Polar coordinates & momentum conservation 

 Wednesday – Start Ch. 2 (air resistance) 

 


