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Project Proposals Due at the end of next Monday 

 Three levels of description:   

Basic what it achieves (doorbell) 

General Logic flow 

Schematic 

 

Handouts: 

 Assignment #8, Lab #8 

 TTL vs. CMOS levels 

 Boolean algebra theorems 

 Count-to-16 circuit 

 Count-by-3 circuit design 

 

Study List for Quiz #8:  

1. Logic gates: AND, NAND, OR, NOR, XOR, XNOR, and NOT (inverter). 

2. Know how to use the truth tables for logic gates. 

3. Data and JK Flip-Flops 

 

Logic Gates 

 Symbols 

 Truth Tables 

 TTL & CMOS 

 

Boolean Algebra 

 can make anything with NAND or NOR gates! 

 De Morgan‟s theorem 

 

Numbering systems & codes – decimal, binary, BCD 

 

(Open –collector & three-state logic – NO TIME!) 

 

Flip-Flops 

 RS 

 Clocked RS – also the different types of clocking 

 Data – count-by-two ciruit 

 JK – count-to-16 circuit 

 

BCD-to-decimal Decoder & Seven-segment Display 

 

Count-by-3 circuit design (the decade counter is similar!) 

 

Synchronous vs. ripple counters 

Mon. 3/15 

Wed. 3/17 

Thurs. 3/18 

Fri. 3/19 

Ch’s 11 & 12: Digital Circuits 

more of the same 

Quiz Ch‟s 11 & 12; Lab 8: Digital Circuits  

More of the same 

 

 

HW 8: Ch11 Pr.2,8,9*; Ch12 Pr 1,5 

Lab 8 Notebook 
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11-4 Boolean Algebra  

As already mentioned, you already know all about addition, multiplication, and even integration 

and differentiation.  However, you may not be as familiar with discrete, Boolean algebra.  If 

that‟s the case, then a) you may have a limited sense of the use of logic gates and b) you may not 

appreciate how networks of simple gates can perform complex reasoning.  So, here‟s a crash 

course in Boolean Algebra.  

 

Common short hand for Boolean Logic operations 

True = 1 

False = 0 

AND = * BA*   reads “A AND B” 

OR = + BA  reads “A OR B” 

NOT = OutA  reads “NOT A” 

XOR =     A        B  reads “A XOR B” 

X-NOR = A          B reads “A X-NOR B”  

 

While the uses of * and + in Boolean statements bears some resemblance to their use in 

continuous algebra, you‟d quickly get into trouble if you read them as “multiplication” and 

“addition.”  One thing that they do have in common with their regular-algebra counter parts is 

their commutative, distributive, and associative behavior.  That is 

 A*B = B*A     A+B = B+A     commutative 

 A*(B+C)=A*B+A*C      distributive 

 A*(B*C) = (A*B)*C     A+(B+C)= (A+B)+C   associative  

 

Boolean Theorems.  Indeed, table 11.7, which shows some Boolean Theorems that would make 

absolutely no sense if we were talking addition and multiplication.  The use of these theorems is 

that they allow you to find alternative ways of performing the same logical operation.  Often, you 

want to perform a given operation in the simplest way possible since the logic is bound to be 

more transparent and you‟re apt to use fewer chips.  Then again, sometimes you‟d rather use a 

few more gates if it means you use less variety of types since logic gates often come in packs of 

two or four (one chip with two or four individual gates in the same package). 

 

Some of the Boolean Theorems are so self-evident as to be laughable if you just recast them in 

English.  Others are not at all obvious but can be proven by either employing a number of the 

more obvious ones or comparing logic tables for the two different operations. 

 

 

1. A+A = A.   

a.  “Do you (have an apple OR have an apple)?”  You might as well just ask “Do 

you have an apple?” once. 

 

A A OR out put 

1 1 1 

0 0 0 
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2. A*A=A.   

a. Similarly, “Do you (have an apple AND have an apple)?”; you might as well just 

ask “Do you have an apple?” 

 

 

 

 

 

3. A+1 = 1 

a. “Are you here OR do you have an apple?”; the unilateral „are you here‟ option 

renders moot apple-ownership condition.  

 

 

 

 

 

4. A*1=A 

a. “Are you here AND do you have an apple?” = “Do you have an apple?” 

 

 

 

 

 

5. A+0=A 

a. “Are you absent OR do you have an apple?” = “Do you have an apple?” 

 

 

 

 

 

6. A*0=0 

a. “Are you absent AND do you have an apple?” = “Are you absent?” 

 

 

 

 

 

 

 

7. A+ A =1 

a. “Do you have an apple OR not have an apple?” there‟s no way someone won‟t 

say “yes” 

                       Equivalently  

 

 

 

 

 

 

A A AND out put 

1 1 1 

0 0 0 

A Hi OR  out put 

1 1 1 

0 1 1 

A Hi AND  out put 

1 1 1 

0 1 0 

A Lo OR  out put 

1 0 1 

0 0 0 

A Lo AND  out put 

1 0 0 

0 0 0 

A A  OR  out put 

1 0 1 

0 1 1 

A 

A 
A

N

D 

Hi 
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8. A* A =0 

a. “Do you have an apple AND not have an apple?”  No one could answer “yes” to 

that. 

                                  Equivalently  

 

 

 

 

9. A =A 

a. “Do you not not have an apple?” You mean „Do you have an apple.‟ 

 

10. B*A+A=A 

a. “Do you (have a banana AND an apple) OR have an apple?” In other words, „Do 

you have an apple?‟ 

 

 

 

 

 

 

 

 

11. A*(A+B) = A 

a. “Do you (have a banana or an apple) AND have an apple?” In other words, „Do 

you have an apple?‟ 

 

b. Proof: A*(A+B) = A*A + A*B = A + A*B = A (last step by Th. 10) 

 

 

 

 

 

 

 

 

12. (B+ A )*A = B *A + A *A = B*A + 0 = B*A (by appealing to simpler theorems) 

a. “Do you (have a banana OR Not have an apple) AND have an apple?” = “Do you 

have an apple AND a banana?” 

 

 

 

 

 

 

 

 

 

 

 

A A  AND  out put 

1 0 0 

0 1 0 

A B B*A B*A + A 

1 0 0 1 

0 1 0 0 

1 1 1 1 

0 0 0 0 

A B B+A A*(B+A) 

1 0 1 1 

0 1 1 0 

1 1 1 1 

0 0 0 0 

A B A  (B+ A ) (B+ A )*A B*A 

1 0 0 0 0 0 

0 1 1 1 0 0 

1 1 0 1 1 1 

0 0 1 1 0 0 
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13. A+ A *B = A + B 

a. “Do you have an apple OR (Not have an apple AND have a banana)?” that is “Do 

you have an apple OR a banana?” 

                                      

 

 

 

 

 

 

The book proves Theorem 16 in this way: BA* = A + B  

a. “Do you NOT have both an apple AND a Banana?” = “Do you NOT have an apple OR 

NOT have a banana?” 

 

 

 

 

17: BA = A * B  

a. “Do you NOT have either an Apple OR a Banana?” = “Do you NOT have an apple AND 

NOT have a Banana?” 

 

A B A  B  A+B BA  A * B  

1 0      

0 0      

1 1      

0 1      

 

Boolean Theorems -> Circuit Equivalents 

These last two theorems, are particularly useful for circuit design because they help us to use 

NAND gates to perform NOT, AND, OR, NOR and even X-OR operations.  That may not seem 

particularly useful but gates often come packaged, four of the same together in one chip.  So 

when it comes to actually building a circuit, it‟s often handy to just use another couple terminals 

on a chip you already need rather than making room for yet another chip on your board.   

 

 

Figures 11.19 & 20  illustrate these designs 
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OR 

 

 

 

 

A B A  A *B A+ A *B A + B 

1 0 0 0 1 1 

0 0 1 0 0 0 

1 1 0 0 1 1 

0 1 1 1 1 1 
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NOR 

 

 

 

 

 

 

X-OR 

 

 

 

X-NOR   since it‟s the inverse of X-OR (ask them to perform the logic of the NOT to get the 

final expression) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11-5  Numbering Systems 

It‟s quite obvious that our old continuous-math circuits could represent and manipulate a 

continuous range of numeric values: the signal can be a voltage of 10.01V or 10.0099V or…  

That‟s particularly important for smooth operations like integration and differentiation.  There 

are downsides though; for example, adders and integrators can‟t distinguish between signal and 

noise – they add / integrate whatever their input is.  Along those lines, if you want to represent 

number to seven digits, you need to have a signal-to-noise ratio of 10
7
! 

 

Now, it‟s quite obvious that our new discrete-math circuits can represent and manipulate 0‟s and 

1‟s, but what may not be immediately obvious is that, with 1‟s and 0‟s they can represent any 

discrete number to however many digits you‟re willing to handle; the catch is that rather than 

being able to encode the value in one continuously varying signal, you encode it in N discretely 

varying signals.  We just have to represent that value in Binary. 

 

Decimal a.k.a. Base 10 

First let‟s quickly look at how we represent numbers in Decimal, then we‟ll see that it‟s not so 

very different in Binary.  The two freedoms we have for representing different numbers are 

symbols and placement of those symbols.  First we step through our basis of ten available 

symbols, 0-9, and then, if that‟s not enough, we add a „place‟ and do it again. 

 

A A  

B B  

BA  
BA  

A 

B 

BA*  

BAA **  

0**0*

******

*********

ABBABABA

BABABAABAB

BAABABBAABAB

 

BAB **  

A 

B 

BA*  

BAA **  

BAB **  

ABBA **  

00**

**

*****

BABA

ABBAABBA

ABBAABBA
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So, when we write 12,425 we‟ve encoded the numeric value in the specific placement of specific 

symbols 

 

 

 

 

 

 

 

 

 

 

…N  M  L  K  J             means …N×10
4
 + M×10

3
 + L×10

2
 + K×10

1
 + J×10

0
  

 where N,M,L,K,J… can be any numeral from 0 to 9 

Binary a.k.a. Base 2 

Again, we‟ve got the freedoms of symbols and placement with which to encode a number. Now, 

in Binary we only have a basis of  two symbols, 0 and 1.  So rather than having to move up to the 

next place after every 10
th

 symbol, we have to do it after every 2
nd

 symbol. 

 

 

 

 

 

 

 

 

 

  …N  M  L  K  J             means N×2
4
 + M×2

3
 + L×2

2
 + K×2

1
 + J×2

0
  

 Where N, M, L, K, J… can be 0 or 1. 

 

 

So, for example 10011 = 1×2
4
 + 0×2

3
 + 0×2

2
 + 1×2

1
 + 1×2

0
 = 16 + 0 + 0 + 2 + 1 = 19 

 

 

Vocabulary 

Bit = one binary digit (which means one electronic „line‟ carrying one signal) 

Byte = eight binary digits (which means eight electronic „lines‟, each carrying one signal) 

 With eight places, largest value is 11111111 = 

1×2
7
+1×2

6
+1×2

5
+1×2

4
+1×2

3
+1×2

2
 +1×2

1
+1×2

0 
= 128+64+32+16+8+4+2+1=255 

            and of course the smallest is 00000000 

From 0 up to 255, there are 256=2
8
 discrete possible values.  You may have encountered 

this language “8 bit”, “16 bit”, “32bit” and “64bit” when people talk about computers. For 

example, you can set your monitor to 16bit or 32bit color: 2
16

=65,536 shades or 

2
32

=4,294,967,296 shades.  64bit logic means that a value can be represented across 64 discrete 

lines. 

 

 

10
4
 Ten-thousands place 

10
3
 Thousands place 

10
2
 Hundreds place 

10
1
 Tens place 

10
0
 Ones place 

2
4
 Sixteens place 

2
3
 Eights place 

2
2
 Fours place 

2
1
 Twos place 

2
0
 Ones place 
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We‟ll get more experience with this later, but just to relate this „binary‟ stuff back to our logic 

gates, here‟s a really simple operation: adding two one-bit numbers and encoding that as a two-

bit number: 

 

Say A = 0 and B = 0,then  

C  2
1
 2

0
 

     0  0  = zero 

Say A = 1 and B = 0, or the other way around, then  

C  2
1
 2

0
 

     0  1  = one 

Say A = 1 and B= 1 

C  2
1
 2

0
 

     1  0 = two 

 

 

11-6 Codes 

The book notes that there are a variety of ways to encode a number when you only have 

freedoms of place and two symbols.  For us, it suffices to appreciate this fact, and move on. 

 

 

 

 

 

 

 

Chapter 12:  digital Circuitry 

  Introduction.  In chapter 11 we met the basic components but didn‟t talk much about actually 

achieving anything with them.  Chapter 12 is more about applications.  Chapter 13, which we‟ll 

briefly touch on in a few weeks, is about the most famous application of digital circuitry – 

computers.  For now, we‟ll focus on counters, registers, and control circuits. 
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12-2  Flip-Flops   
You first met a Flip-Flop inside the 555 timer.  There are actually a few different styles of Flip-

Flops that we‟ll explore.  We‟ll start with the simple RS flip-flop and then see how it can be built 

upon and modified to give greater control. 

 

RS (traditionally for Reset and Set, the “NOT” bars will make sense when we see the next 

model) 

 

Let‟s use what we know about NAND gates to reason out how this thing behaves.  The logic of 

the individual NANDs is 

 

 

1 S  T= Q  Q 

a 0 0 1 

b 1 0 1 

c 0 1 1 

d 1 1 0 

 

 

Now we try to merge these two logic tables, cutting out the middle-men of U and T 

 

From the first table‟s rows a and c we see that Q is 1 as long as S  is 0 (regardless of Q ) 

From the second table‟s rows a and c we see that Q  is 1 as long as R is 0 (regardless of Q) 

Now, to fill in some more of the blanks, from the first table‟s row d, if S = 1 and T= Q  = 1, then 

Q= 0 

From the second table‟s row d, if R =1 and Q = 1, then Q =0. 

 

 

 

 

 

 

 

Now for the tricky row.  We know that  S = 1 and R =1, but we don‟t really have a foothold on 

Q  and Q.  If we assume Q  = 1, then Q=0  according to table 1‟s row d; which is consistent with 

table 2‟s row b.  But before we get wed to the idea, if we assume that Q  = 0, then Q = 1 

according to table 1‟s row b, which is consistent with table 2‟s row d.  Which is it?  The proper 

conclusion is that, if you start out in table 3‟s state b, and then flip  R ‟s value, you hold the 

output values of state b, but if you start out in table 3‟s state c, and then flip S ‟s value, you hold 

the output values of state c.   

 

The book notes that the top row can be unstable in some SR flip-flop designs, though that isn‟t 

the case in this one. 

 

 

 

 

2 R  U=Q Q  

a 0 0 1 

b 1 0 1 

c 0 1 1 

d 1 1 0 

3 S  R  Q Q  

a 0 0 1 1 

b 1 0 0 1 

c 0 1 1 0 

d 1 1 hold hold 

S  

R  

Q  

Q  

T 

U 
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Clocked RS 

 

What if the input is intended to change from S =1, R =0 to S = 0, R =1, so going from row b to 

row c, but say the R value switches a tad faster than the S value does; oops, you get a moment of 

row a!  How can this be avoided?  If the RS flip flop is “clocked.”  A third input is used to tell 

the flip flop when it‟s time to look at its inputs, the rest of the time it simply holds its outputs.  

This is kind of like the additional control on tri-state gates, except rather than telling the gate 

when it‟s time to set the output, the clock tells the flip-flop when it‟s time to see the input. 

 

 

 

 

 

 

 

 

 

 

Now, when C =Hi, the top NAND gate gives SS*1  and the bottom gate gives RR*1 , thus 

the naming we already used.  From there, we‟ve already figured out the device‟s truth table.  

 

 

 

 

 

 

 

 

 

Now, when C = Lo, the top NAND gate gives 10*0 S and the bottom one similarly gives 

10*0 R regardless of R or S‟s values. With the S and R  both = 1, the outputs just hold. 

 

So, the outputs are responsive to the S and R values only if C=Hi.  Otherwise, they just hold their 

values.  Aside from avoiding unintentionally stumbling into a state like row a, this also allows 

one physical pair of A, B input lines to feed a lot of flip-flops, each one looks on the lines for it’s 

appropriate input signals when its clock tells it to. 

 

 

There are two valuable variations on the Clocked RS Flip-Flop.  One is essentially two in series 

but out of synch so that information moves through the circuit in a slow, orderly fashion.  The 

other essentially has only one „input‟ signal. 

 

 

 

 

 

 

C=Hi S R S  R  Q Q  

a 1 1 0 0 1 1 

b 0 1 1 0 0 1 

c 1 0 0 1 1 0 

d 0 

x 

0 

x 

1 

1 

1 

1 

hold 

hold 

hold 

hold C=Lo 

S  

R  

Q  

Q  

S 

R 

C 
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Data Flip-Flop  

 

This is a clocked RS flip-flop that‟s fed one signal, „Data.‟  It goes right onto the S line and its 

inverse goes onto the R line. 

 

 

 

 

 

 

 

 

 

Looking at the data table, since we‟re guaranteed that R and S will be opposite, rows a and d just 

aren‟t options. 

 

 

 

 

 

 

 

 

Thus Q just passes the input signal / Data value and Q passes the opposite.  Then why bother 

using the flip-flop at all?  Because it passes these values only when the clock is Hi.  When the 

clock is Lo, it holds its value regardless of what happens to the input signal.  Why would you 

want to do that?  One word: “memory.”  These gates „remember‟ what the data line said when 

their clocks were high.  They will hold that memory until they‟re told to over-write it by the 

clock going high again.  That alone probably suggests a use for such gates.  There are a couple of 

other nice uses For one thing, right when that input line transitions between high and low, if 

there‟s any noise on that signal, it could flutter back and forth across the threshold;  meanwhile, 

this divice‟s output won‟t be effected by that fluttering if the clock is Lo during the moment of 

transition.  Alternatively, you can have lots of these gates fed by one single “data” wire, then 

each gate can „look‟ at the wire only when it‟s its turn / its clock goes high.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C=Hi S=Data R=Data S  R  Q Q  

a 1 1 0 0 1 1 

b 0 1 1 0 0 1 

c 1 0 0 1 1 0 

d 0 0 1 1 hold hold 

C=Lo x x 1 1 hold hold 

S  

R  

holdDataQ /  

holdDataQ /  

S 

R 

C 
Data 
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Master-Slave Flip Flop 

This is essentially two clocked RS flip-flops in series, but the second runs off C , is it holds 

while its predecessor updates, then it updates while its predecessor holds.  All together, the 

device samples the input when C is Hi („tick‟) and updates the output when C is Lo („tock‟).  

This slows down the transmission of information, which can be invaluable if, say, the output of 

the flip-flop is used in a feedback to influence its own next input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So, if the input changes on a „tick‟ (clock going Hi), that change doesn‟t trickle through to the 

output until the „tock‟ (clock going Lo). One way of looking at the master-slave flip-flop‟s 

operation is this: the output just after the clock signal goes low depends on the input just before it 

went low.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 S R       C=Hi      C=Lo 

Q1=S2 
1Q =R2 Q1=S2 

1Q =R2 

a 1 1 1 1 Hold Hold 

b 0 1 0 1 Hold Hold 

c 1 0 1 0 Hold Hold 

d 0 0 Hold Hold Hold Hold 

 S2 

Q1 

R2 

1Q  

      C=Hi      C=Lo 

Q1=S2 
1Q =R2 Q Q  

a 1 1 Hold Hold 1 1 

b 0 1 Hold Hold 0 1 

c 1 0 Hold Hold 1 0 

d 0 0 Hold Hold Hold Hold 

S  

R  

Q1 

1Q  

S 

R 

C 

 

 

Q  

Q  

S2 

R2 
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Toggle Flip-flop: Divide-by-two 

So far, we‟ve met a few different variations on the basic flip-flop.  Now let‟s consider a very 

simple circuit using one. Mater-Slave with feedback of SQ and RQ .  Then the clock is 

the only free parameter. 

 

 

 

 

 

 

 

 

 

 

 

What the heck would this do?  Plausibly, it‟s going to cycle its output, so just to jump into that 

cycle and see where it leads: 

S/R                                                Q1=S2/ 1Q =R2    Q/ Q  

Clock Lo=0 (tock)  

1 0     0 

0 1     1 

Clock goes Hi = 1 (tick) 

1                                     1     0 

0                                     0     1 

Clock goes Lo = 0 (tock) 

0 1     1 

1 0     0 

Clock goes Hi = 1 (tick) 

0                                    0     1 

1                                    1     0   

 

Notice that Q changes values half as frequently as the clock does (ditto for any of the other 

signals.) 

 

A convenient way of visualizing this is 

 

 

                            time 

 

Clock 

 

Q 

 

 

 

 

 

S  

R  
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R 

C 

 

 

Q  

Q  

 

 

 

Hi 

Lo 
Hi 

Lo 
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Imagine what you‟d get if you used this circuit‟s output as the clock for a similar circuit.  Notice 

that the output signal changes each time the clock transitions from Hi to Lo, in keeping with the 

read that the output after the clock goes low depends upon the input before it went low. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q2 changes states a quarter as often as the clock does.  

 

JK Flip-Flop 

The next version of flip-flop has the desirable „output after down tick depends on input before‟ 

feature.  It also has two more controls.   

 

 

 

 

 

 

 

 

 

 

The book gives a schematic of its innards, but it‟s probably not worth our time to reason through 

it, just close the hood and accept that these are the rules of its operation: 

 

Q opposite of Q always (so we won‟t bother listing it separately) 

Q = 1 if  Set = 0, regardless of J or K  (bar indicates active when low) 

Q = 0 if  setRe =0, regardless of J or K (bar indicates active when low) 

Otherwise, if 1Re setSet , then the output after the clock transitions from 1 to 0 depends on 

the inputs before the transition as 

C = Hi  before downstroke  tn After downstroke tn+1 

J K Q 

0 0 Qn  (What it already was) 

1 0 1 

0 1 0 

1 1 
nQ  (opposite of what it was) 

 

The bar over “clock” indicates that input influences output when clock goes low. 

Q1 
Q2 C2 C1 

Hi 
Lo 
Hi 

Lo 

Lo 
Hi 

Clock 

Q1 

Q2 

Master/slave Master/slave 

J 

 
C 

 
K 

 

S 

 

R 

 

Q 

 
Q  

 

Set  

setRe

Set  

Clock  
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12-4 Count to 16 binary counter 

 

We‟ve already seen how to make a „divide by 2‟ and a „divide by 4‟ circuit with master-slave 

flip-flops.  Something similar can be achieved with these JK flip flops.  For the sake of not 

twisting wires, the clock input is displayed at the top.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Looking at the truth table, with both J and K held high, the output, Q, is doomed to flip states 

every time the input transitions from Hi to L.  Just to start somewhere, say that the output is 

initially low, then if the input regularly ticks and tocks, the output looks like 

 

 

 

 

 

 

Now let‟s add a second JK Flip-Flop that‟s „clocked‟ by the first one‟s input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set  

setRe

Set  

Clock  

J 
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S 
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1 

input 
QA 

input 

QA 0    0    1  1    0    0   1   1    0   0    1   1    0   0    1   1    0   0    1   1   0    0    1   1    0   0    1    1   0   0    1   1 

Set  

setRe

Set  

Clock  

J 

 

C 

 

K 

 

S 

 

R 

 

Q 

 
Q  

 

1 

input 
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QA 0    0    1  1    0    0   1   1    0   0    1   1    0   0    1   1    0   0    1   1   0    0    1   1    0   0    1    1   0   0    1   1 

0    0    0   0   1  1      1   1   0    0   0    0   1   1    1    1   0   0    0   0    1   1    1     1  0   0    0    0   1   1    1   1 QB 
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Count to 16 (or at least 0 to 15) For that matter, how about we add two more JK Flip-Flops. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This was an example of an “asynchronous” counter, which means that the chips do not share a 

common „clock‟ signal.  This particular case, each chip‟s “clock” input is the previous chip‟s 

output, is known as a “ripple counter.” 
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input 

QA 0    0    1  1    0    0   1   1    0   0    1   1    0   0    1   1    0   0    1   1   0    0    1   1    0   0    1    1   0   0    1   1 

0    0    0   0   1  1      1   1   0    0   0    0   1   1    1    1   0   0    0   0    1   1    1     1  0   0    0    0   1   1    1   1 QB 

0    0    0   0   0    0   0   0    1   1    1   1    1   1    1   1   0    0   0    0   0    0   0    0    1   1    1    1   1   1   1   1 

0    0    0   0   0    0   0   0    0    0   0    0   0    0   0    0   1    1   1   1    1   1    1   1    1   1    1    1   1    1   1   1 QD 
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Alternatively, rather than holding the J & K inputs high for all chips and just manipulating the 

„clock‟ signals, we could give all the chips the same clock signal and manipulate their J & K 

inputs in order to make them „count.‟  This, with all chips running 

off the same clock, would be synchronous.  Here‟s an example of a 

synchronous shift / ring counter. (Warning: C, R, and S get shoved 

all around in these diagrams in order to make the external wiring 

look the simplest, don‟t take the geometry too literally.) 

R

e

c

all the logic table: 

 

 

 

 

 

 

 

 

 

 

Also recall that a NOR gate‟s output is Hi only if both inputs are Lo.  The outputs cycle as 

 

 

 

 

 

 

 

 

 

 

     0        1         2        3           4        5         6         7        0         1          … 

 

The text, on pages 276 through 277, gives a variety of different counters – they count up, they 

count down, they count through 8 states, they count through 16 states,… 

 

While one can construct a counter from flip-flops and gates, there are also single-chip counters 

such as the 74192 which you can set to count just to 1 or up to 9.  Running two of these in series 

allows you to count to 99 – one of them handles the 1‟s place while the other handles the 10‟s 

place and gets updated each time the first one cycles through all its digits. 

 

12-3  Digital Read-Outs 

At this point, before getting more into actual circuits that use these chips, the book takes a little 

digression about ways of displaying the logic values.  There are three basic types of lights: 

incadenscent (which takes a lot of current), florescent (which takes a large voltage) and Light 

Emitting Diode, LED, which takes neither a large current nor a large voltage.  In lab last week 

you already employed these to visualize when the 555‟s output was high or low.  For reference, 

the book shows sample wirings using the three different types of lights. 

C = Hi    tn tn+1 
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input 

QA 0    0    1  1    0    0   1   1    0   0    1   1    0   0    1   1    0   0    1   1   0    0    1   1    0   0    1    1   0   0    1   1 

0    0    0   0   1  1      1   1   0    0   0    0   1   1    1    1   0   0    0   0    1   1    1     1  0   0    0    0   1   1    1   1 QB 

0    0    0   0   0    0   0   0    1   1    1   1    1   1    1   1   0    0   0    0   0    0   0    0    1   1    1    1   1   1   1   1 QC 
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LED‟s come in a small range of colors: red, green, yellow, blue.  Orange can be achieved with a 

diode that‟s built for red when biased one way and yellow another, then an A/C signal would 

give the appearance of orange. 

 

A third common type of display is LCD.  It doesn‟t actually generate light, but reflectivity can be 

varied by getting liquid crystals to line up or not.  A very common display that uses LCD‟s is the 

Seven-Segment Display as is featured in those nifty digital watches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the different input lines go high, the different segments get activated.  One of these is 

often accompanied by a BCD-to-seven-segment to take something in binary and light up the 

appropriate decimal digit.  As the labels suggest, if a binary number is represented on the top left 

lines, then the appropriate combination of segments get lit up.  In the spirit of „waste not, want 

not‟, this can easily make 16 different shapes, and so represent 0 – 15, but the shapes used for 10 

and above are not ones we typically use. 

 

LD = Lo: Locks the Display regardless of how the output may subsequently change 

Bl = Hi: Blanks the display 
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Ph = Hi: flips the “Phase” of the output logic (what would be Hi is Lo and vice versa). 

 

Here‟s an example using these two chips together: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Binary  Decimal 

1010    =       5   
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