
Physics 310

Lecture 8b – Digital Circuits

Project Proposals Due at the end of next Monday

 Three levels of description:

Basic what it achieves (doorbell)

General Logic flow

Schematic

Handouts:

 Assignment #8, Lab #8

 TTL vs. CMOS levels

 Boolean algebra theorems

 Count-to-16 circuit

 Count-by-3 circuit design

Study List for Quiz #8:

1. Logic gates: AND, NAND, OR, NOR, XOR, XNOR, and NOT (inverter).

2. Know how to use the truth tables for logic gates.

3. Data and JK Flip-Flops

Logic Gates

 Symbols

 Truth Tables

 TTL & CMOS

Boolean Algebra

 can make anything with NAND or NOR gates!

 De Morgan‟s theorem

Numbering systems & codes – decimal, binary, BCD

(Open –collector & three-state logic – NO TIME!)

Flip-Flops

 RS

 Clocked RS – also the different types of clocking

 Data – count-by-two ciruit

 JK – count-to-16 circuit

BCD-to-decimal Decoder & Seven-segment Display

Count-by-3 circuit design (the decade counter is similar!)

Synchronous vs. ripple counters

Mon. 3/15

Wed. 3/17

Thurs. 3/18

Fri. 3/19

Ch’s 11 & 12: Digital Circuits

more of the same

Quiz Ch‟s 11 & 12; Lab 8: Digital Circuits

More of the same

HW 8: Ch11 Pr.2,8,9*; Ch12 Pr 1,5

Lab 8 Notebook

Physics 310

Lecture 8b – Digital Circuits

11-4 Boolean Algebra

As already mentioned, you already know all about addition, multiplication, and even integration

and differentiation. However, you may not be as familiar with discrete, Boolean algebra. If

that‟s the case, then a) you may have a limited sense of the use of logic gates and b) you may not

appreciate how networks of simple gates can perform complex reasoning. So, here‟s a crash

course in Boolean Algebra.

Common short hand for Boolean Logic operations

True = 1

False = 0

AND = * BA* reads “A AND B”

OR = + BA reads “A OR B”

NOT = OutA reads “NOT A”

XOR = A B reads “A XOR B”

X-NOR = A B reads “A X-NOR B”

While the uses of * and + in Boolean statements bears some resemblance to their use in

continuous algebra, you‟d quickly get into trouble if you read them as “multiplication” and

“addition.” One thing that they do have in common with their regular-algebra counter parts is

their commutative, distributive, and associative behavior. That is

 A*B = B*A A+B = B+A commutative

 A*(B+C)=A*B+A*C distributive

 A*(B*C) = (A*B)*C A+(B+C)= (A+B)+C associative

Boolean Theorems. Indeed, table 11.7, which shows some Boolean Theorems that would make

absolutely no sense if we were talking addition and multiplication. The use of these theorems is

that they allow you to find alternative ways of performing the same logical operation. Often, you

want to perform a given operation in the simplest way possible since the logic is bound to be

more transparent and you‟re apt to use fewer chips. Then again, sometimes you‟d rather use a

few more gates if it means you use less variety of types since logic gates often come in packs of

two or four (one chip with two or four individual gates in the same package).

Some of the Boolean Theorems are so self-evident as to be laughable if you just recast them in

English. Others are not at all obvious but can be proven by either employing a number of the

more obvious ones or comparing logic tables for the two different operations.

1. A+A = A.

a. “Do you (have an apple OR have an apple)?” You might as well just ask “Do

you have an apple?” once.

A A OR out put

1 1 1

0 0 0

+ +
. .

O

R

O

R

A

A

A

N

D O

R

O

R

O

R

Identical

Physics 310

Lecture 8b – Digital Circuits

2. A*A=A.

a. Similarly, “Do you (have an apple AND have an apple)?”; you might as well just

ask “Do you have an apple?”

3. A+1 = 1

a. “Are you here OR do you have an apple?”; the unilateral „are you here‟ option

renders moot apple-ownership condition.

4. A*1=A

a. “Are you here AND do you have an apple?” = “Do you have an apple?”

5. A+0=A

a. “Are you absent OR do you have an apple?” = “Do you have an apple?”

6. A*0=0

a. “Are you absent AND do you have an apple?” = “Are you absent?”

7. A+ A =1

a. “Do you have an apple OR not have an apple?” there‟s no way someone won‟t

say “yes”

 Equivalently

A A AND out put

1 1 1

0 0 0

A Hi OR out put

1 1 1

0 1 1

A Hi AND out put

1 1 1

0 1 0

A Lo OR out put

1 0 1

0 0 0

A Lo AND out put

1 0 0

0 0 0

A A OR out put

1 0 1

0 1 1

A

A
A

N

D

Hi

O

R

O

R

A
Hi

A

Hi A
N

D A

A

O

R

O

R

A
Lo

A

Lo A

N

D Lo

O

R

O
R

A

A O

R

O
R

A

Hi

Identical

Identical

Identical

Identical

Identical

Physics 310

Lecture 8b – Digital Circuits

8. A* A =0

a. “Do you have an apple AND not have an apple?” No one could answer “yes” to

that.

 Equivalently

9. A =A

a. “Do you not not have an apple?” You mean „Do you have an apple.‟

10. B*A+A=A

a. “Do you (have a banana AND an apple) OR have an apple?” In other words, „Do

you have an apple?‟

11. A*(A+B) = A

a. “Do you (have a banana or an apple) AND have an apple?” In other words, „Do

you have an apple?‟

b. Proof: A*(A+B) = A*A + A*B = A + A*B = A (last step by Th. 10)

12. (B+ A)*A = B *A + A *A = B*A + 0 = B*A (by appealing to simpler theorems)

a. “Do you (have a banana OR Not have an apple) AND have an apple?” = “Do you

have an apple AND a banana?”

A A AND out put

1 0 0

0 1 0

A B B*A B*A + A

1 0 0 1

0 1 0 0

1 1 1 1

0 0 0 0

A B B+A A*(B+A)

1 0 1 1

0 1 1 0

1 1 1 1

0 0 0 0

A B A (B+ A) (B+ A)*A B*A

1 0 0 0 0 0

0 1 1 1 0 0

1 1 0 1 1 1

0 0 1 1 0 0

Lo

A A

N

D

A
N

D O

R

O

R

A

B

A

A
N

D

O

R

O

R A

B

A

A

N
D

O

R

O

R

B

A

A

N

D

B

A

Identical

Identical

A

A
N

D

A

Identical

Physics 310

Lecture 8b – Digital Circuits

13. A+ A *B = A + B

a. “Do you have an apple OR (Not have an apple AND have a banana)?” that is “Do

you have an apple OR a banana?”

The book proves Theorem 16 in this way: BA* = A + B

a. “Do you NOT have both an apple AND a Banana?” = “Do you NOT have an apple OR

NOT have a banana?”

17: BA = A * B

a. “Do you NOT have either an Apple OR a Banana?” = “Do you NOT have an apple AND

NOT have a Banana?”

A B A B A+B BA A * B

1 0

0 0

1 1

0 1

Boolean Theorems -> Circuit Equivalents

These last two theorems, are particularly useful for circuit design because they help us to use

NAND gates to perform NOT, AND, OR, NOR and even X-OR operations. That may not seem

particularly useful but gates often come packaged, four of the same together in one chip. So

when it comes to actually building a circuit, it‟s often handy to just use another couple terminals

on a chip you already need rather than making room for yet another chip on your board.

Figures 11.19 & 20 illustrate these designs

NOT

AND

OR

A B A A *B A+ A *B A + B

1 0 0 0 1 1

0 0 1 0 0 0

1 1 0 0 1 1

0 1 1 1 1 1

A

N
D

B

A
O

R

O

R

O

R

O

R

A A

A
B

BA* BABA **

A A

B B

BABABA*

B

A O

R

O

R

Identical

B

A

O

R

O

R

B

A

Physics 310

Lecture 8b – Digital Circuits

NOR

X-OR

X-NOR since it‟s the inverse of X-OR (ask them to perform the logic of the NOT to get the

final expression)

11-5 Numbering Systems

It‟s quite obvious that our old continuous-math circuits could represent and manipulate a

continuous range of numeric values: the signal can be a voltage of 10.01V or 10.0099V or…

That‟s particularly important for smooth operations like integration and differentiation. There

are downsides though; for example, adders and integrators can‟t distinguish between signal and

noise – they add / integrate whatever their input is. Along those lines, if you want to represent

number to seven digits, you need to have a signal-to-noise ratio of 10
7
!

Now, it‟s quite obvious that our new discrete-math circuits can represent and manipulate 0‟s and

1‟s, but what may not be immediately obvious is that, with 1‟s and 0‟s they can represent any

discrete number to however many digits you‟re willing to handle; the catch is that rather than

being able to encode the value in one continuously varying signal, you encode it in N discretely

varying signals. We just have to represent that value in Binary.

Decimal a.k.a. Base 10

First let‟s quickly look at how we represent numbers in Decimal, then we‟ll see that it‟s not so

very different in Binary. The two freedoms we have for representing different numbers are

symbols and placement of those symbols. First we step through our basis of ten available

symbols, 0-9, and then, if that‟s not enough, we add a „place‟ and do it again.

A A

B B

BA
BA

A

B

BA*

BAA **

0**0*

ABBABABA

BABABAABAB

BAABABBAABAB

BAB **

A

B

BA*

BAA **

BAB **

ABBA **

00**

**

BABA

ABBAABBA

ABBAABBA

Physics 310

Lecture 8b – Digital Circuits

So, when we write 12,425 we‟ve encoded the numeric value in the specific placement of specific

symbols

…N M L K J means …N×10
4
 + M×10

3
 + L×10

2
 + K×10

1
 + J×10

0

 where N,M,L,K,J… can be any numeral from 0 to 9

Binary a.k.a. Base 2

Again, we‟ve got the freedoms of symbols and placement with which to encode a number. Now,

in Binary we only have a basis of two symbols, 0 and 1. So rather than having to move up to the

next place after every 10
th

 symbol, we have to do it after every 2
nd

 symbol.

 …N M L K J means N×2
4
 + M×2

3
 + L×2

2
 + K×2

1
 + J×2

0

 Where N, M, L, K, J… can be 0 or 1.

So, for example 10011 = 1×2
4
 + 0×2

3
 + 0×2

2
 + 1×2

1
 + 1×2

0
 = 16 + 0 + 0 + 2 + 1 = 19

Vocabulary

Bit = one binary digit (which means one electronic „line‟ carrying one signal)

Byte = eight binary digits (which means eight electronic „lines‟, each carrying one signal)

 With eight places, largest value is 11111111 =

1×2
7
+1×2

6
+1×2

5
+1×2

4
+1×2

3
+1×2

2
 +1×2

1
+1×2

0
= 128+64+32+16+8+4+2+1=255

 and of course the smallest is 00000000

From 0 up to 255, there are 256=2
8
 discrete possible values. You may have encountered

this language “8 bit”, “16 bit”, “32bit” and “64bit” when people talk about computers. For

example, you can set your monitor to 16bit or 32bit color: 2
16

=65,536 shades or

2
32

=4,294,967,296 shades. 64bit logic means that a value can be represented across 64 discrete

lines.

10
4
 Ten-thousands place

10
3
 Thousands place

10
2
 Hundreds place

10
1
 Tens place

10
0
 Ones place

2
4
 Sixteens place

2
3
 Eights place

2
2
 Fours place

2
1
 Twos place

2
0
 Ones place

Physics 310

Lecture 8b – Digital Circuits

We‟ll get more experience with this later, but just to relate this „binary‟ stuff back to our logic

gates, here‟s a really simple operation: adding two one-bit numbers and encoding that as a two-

bit number:

Say A = 0 and B = 0,then

C 2
1
 2

0

 0 0 = zero

Say A = 1 and B = 0, or the other way around, then

C 2
1
 2

0

 0 1 = one

Say A = 1 and B= 1

C 2
1
 2

0

 1 0 = two

11-6 Codes

The book notes that there are a variety of ways to encode a number when you only have

freedoms of place and two symbols. For us, it suffices to appreciate this fact, and move on.

Chapter 12: digital Circuitry

 Introduction. In chapter 11 we met the basic components but didn‟t talk much about actually

achieving anything with them. Chapter 12 is more about applications. Chapter 13, which we‟ll

briefly touch on in a few weeks, is about the most famous application of digital circuitry –

computers. For now, we‟ll focus on counters, registers, and control circuits.

A
N

D

B

A

C‟s 2
0

C‟s 2
1

O

R

Physics 310

Lecture 8b – Digital Circuits

12-2 Flip-Flops
You first met a Flip-Flop inside the 555 timer. There are actually a few different styles of Flip-

Flops that we‟ll explore. We‟ll start with the simple RS flip-flop and then see how it can be built

upon and modified to give greater control.

RS (traditionally for Reset and Set, the “NOT” bars will make sense when we see the next

model)

Let‟s use what we know about NAND gates to reason out how this thing behaves. The logic of

the individual NANDs is

1 S T= Q Q

a 0 0 1

b 1 0 1

c 0 1 1

d 1 1 0

Now we try to merge these two logic tables, cutting out the middle-men of U and T

From the first table‟s rows a and c we see that Q is 1 as long as S is 0 (regardless of Q)

From the second table‟s rows a and c we see that Q is 1 as long as R is 0 (regardless of Q)

Now, to fill in some more of the blanks, from the first table‟s row d, if S = 1 and T= Q = 1, then

Q= 0

From the second table‟s row d, if R =1 and Q = 1, then Q =0.

Now for the tricky row. We know that S = 1 and R =1, but we don‟t really have a foothold on

Q and Q. If we assume Q = 1, then Q=0 according to table 1‟s row d; which is consistent with

table 2‟s row b. But before we get wed to the idea, if we assume that Q = 0, then Q = 1

according to table 1‟s row b, which is consistent with table 2‟s row d. Which is it? The proper

conclusion is that, if you start out in table 3‟s state b, and then flip R ‟s value, you hold the

output values of state b, but if you start out in table 3‟s state c, and then flip S ‟s value, you hold

the output values of state c.

The book notes that the top row can be unstable in some SR flip-flop designs, though that isn‟t

the case in this one.

2 R U=Q Q

a 0 0 1

b 1 0 1

c 0 1 1

d 1 1 0

3 S R Q Q

a 0 0 1 1

b 1 0 0 1

c 0 1 1 0

d 1 1 hold hold

S

R

Q

Q

T

U

Physics 310

Lecture 8b – Digital Circuits

Clocked RS

What if the input is intended to change from S =1, R =0 to S = 0, R =1, so going from row b to

row c, but say the R value switches a tad faster than the S value does; oops, you get a moment of

row a! How can this be avoided? If the RS flip flop is “clocked.” A third input is used to tell

the flip flop when it‟s time to look at its inputs, the rest of the time it simply holds its outputs.

This is kind of like the additional control on tri-state gates, except rather than telling the gate

when it‟s time to set the output, the clock tells the flip-flop when it‟s time to see the input.

Now, when C =Hi, the top NAND gate gives SS*1 and the bottom gate gives RR*1 , thus

the naming we already used. From there, we‟ve already figured out the device‟s truth table.

Now, when C = Lo, the top NAND gate gives 10*0 S and the bottom one similarly gives

10*0 R regardless of R or S‟s values. With the S and R both = 1, the outputs just hold.

So, the outputs are responsive to the S and R values only if C=Hi. Otherwise, they just hold their

values. Aside from avoiding unintentionally stumbling into a state like row a, this also allows

one physical pair of A, B input lines to feed a lot of flip-flops, each one looks on the lines for it’s

appropriate input signals when its clock tells it to.

There are two valuable variations on the Clocked RS Flip-Flop. One is essentially two in series

but out of synch so that information moves through the circuit in a slow, orderly fashion. The

other essentially has only one „input‟ signal.

C=Hi S R S R Q Q

a 1 1 0 0 1 1

b 0 1 1 0 0 1

c 1 0 0 1 1 0

d 0

x

0

x

1

1

1

1

hold

hold

hold

hold C=Lo

S

R

Q

Q

S

R

C

Physics 310

Lecture 8b – Digital Circuits

Data Flip-Flop

This is a clocked RS flip-flop that‟s fed one signal, „Data.‟ It goes right onto the S line and its

inverse goes onto the R line.

Looking at the data table, since we‟re guaranteed that R and S will be opposite, rows a and d just

aren‟t options.

Thus Q just passes the input signal / Data value and Q passes the opposite. Then why bother

using the flip-flop at all? Because it passes these values only when the clock is Hi. When the

clock is Lo, it holds its value regardless of what happens to the input signal. Why would you

want to do that? One word: “memory.” These gates „remember‟ what the data line said when

their clocks were high. They will hold that memory until they‟re told to over-write it by the

clock going high again. That alone probably suggests a use for such gates. There are a couple of

other nice uses For one thing, right when that input line transitions between high and low, if

there‟s any noise on that signal, it could flutter back and forth across the threshold; meanwhile,

this divice‟s output won‟t be effected by that fluttering if the clock is Lo during the moment of

transition. Alternatively, you can have lots of these gates fed by one single “data” wire, then

each gate can „look‟ at the wire only when it‟s its turn / its clock goes high.

C=Hi S=Data R=Data S R Q Q

a 1 1 0 0 1 1

b 0 1 1 0 0 1

c 1 0 0 1 1 0

d 0 0 1 1 hold hold

C=Lo x x 1 1 hold hold

S

R

holdDataQ /

holdDataQ /

S

R

C
Data

Physics 310

Lecture 8b – Digital Circuits

Master-Slave Flip Flop

This is essentially two clocked RS flip-flops in series, but the second runs off C , is it holds

while its predecessor updates, then it updates while its predecessor holds. All together, the

device samples the input when C is Hi („tick‟) and updates the output when C is Lo („tock‟).

This slows down the transmission of information, which can be invaluable if, say, the output of

the flip-flop is used in a feedback to influence its own next input.

So, if the input changes on a „tick‟ (clock going Hi), that change doesn‟t trickle through to the

output until the „tock‟ (clock going Lo). One way of looking at the master-slave flip-flop‟s

operation is this: the output just after the clock signal goes low depends on the input just before it

went low.

 S R C=Hi C=Lo

Q1=S2
1Q =R2 Q1=S2

1Q =R2

a 1 1 1 1 Hold Hold

b 0 1 0 1 Hold Hold

c 1 0 1 0 Hold Hold

d 0 0 Hold Hold Hold Hold

 S2

Q1

R2

1Q

 C=Hi C=Lo

Q1=S2
1Q =R2 Q Q

a 1 1 Hold Hold 1 1

b 0 1 Hold Hold 0 1

c 1 0 Hold Hold 1 0

d 0 0 Hold Hold Hold Hold

S

R

Q1

1Q

S

R

C

Q

Q

S2

R2

Physics 310

Lecture 8b – Digital Circuits

Toggle Flip-flop: Divide-by-two

So far, we‟ve met a few different variations on the basic flip-flop. Now let‟s consider a very

simple circuit using one. Mater-Slave with feedback of SQ and RQ . Then the clock is

the only free parameter.

What the heck would this do? Plausibly, it‟s going to cycle its output, so just to jump into that

cycle and see where it leads:

S/R Q1=S2/ 1Q =R2 Q/ Q

Clock Lo=0 (tock)

1 0  0

0 1  1

Clock goes Hi = 1 (tick)

1  1 0

0  0 1

Clock goes Lo = 0 (tock)

0 1  1

1 0  0

Clock goes Hi = 1 (tick)

0  0 1

1  1 0

Notice that Q changes values half as frequently as the clock does (ditto for any of the other

signals.)

A convenient way of visualizing this is

 time

Clock

Q

S

R

S

R

C

Q

Q

Hi

Lo
Hi

Lo

Physics 310

Lecture 8b – Digital Circuits

Imagine what you‟d get if you used this circuit‟s output as the clock for a similar circuit. Notice

that the output signal changes each time the clock transitions from Hi to Lo, in keeping with the

read that the output after the clock goes low depends upon the input before it went low.

Q2 changes states a quarter as often as the clock does.

JK Flip-Flop

The next version of flip-flop has the desirable „output after down tick depends on input before‟

feature. It also has two more controls.

The book gives a schematic of its innards, but it‟s probably not worth our time to reason through

it, just close the hood and accept that these are the rules of its operation:

Q opposite of Q always (so we won‟t bother listing it separately)

Q = 1 if Set = 0, regardless of J or K (bar indicates active when low)

Q = 0 if setRe =0, regardless of J or K (bar indicates active when low)

Otherwise, if 1Re setSet , then the output after the clock transitions from 1 to 0 depends on

the inputs before the transition as

C = Hi before downstroke tn After downstroke tn+1

J K Q

0 0 Qn (What it already was)

1 0 1

0 1 0

1 1
nQ (opposite of what it was)

The bar over “clock” indicates that input influences output when clock goes low.

Q1
Q2 C2 C1

Hi
Lo
Hi

Lo

Lo
Hi

Clock

Q1

Q2

Master/slave Master/slave

J

C

K

S

R

Q

Q

Set

setRe

Set

Clock

Physics 310

Lecture 8b – Digital Circuits

12-4 Count to 16 binary counter

We‟ve already seen how to make a „divide by 2‟ and a „divide by 4‟ circuit with master-slave

flip-flops. Something similar can be achieved with these JK flip flops. For the sake of not

twisting wires, the clock input is displayed at the top.

Looking at the truth table, with both J and K held high, the output, Q, is doomed to flip states

every time the input transitions from Hi to L. Just to start somewhere, say that the output is

initially low, then if the input regularly ticks and tocks, the output looks like

Now let‟s add a second JK Flip-Flop that‟s „clocked‟ by the first one‟s input.

Set

setRe

Set

Clock

J

C

K

S

R

Q

Q

1

input
QA

input

QA 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Set

setRe

Set

Clock

J

C

K

S

R

Q

Q

1

input

Set

setRe

Set

Clock

J

C

K

S

R

Q

Q

1

QA QB

input

QA 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 QB

Physics 310

Lecture 8b – Digital Circuits

Count to 16 (or at least 0 to 15) For that matter, how about we add two more JK Flip-Flops.

This was an example of an “asynchronous” counter, which means that the chips do not share a

common „clock‟ signal. This particular case, each chip‟s “clock” input is the previous chip‟s

output, is known as a “ripple counter.”

Set

setRe

Set

Clock

J

C

K

S

R

Q

Q

1

input

Set

setRe

Set

Clock

J

C

K

S

R

Q

Q

1

QA QB

Set

setRe

Set

Clock

J

C

K

S

R

Q

Q

1

QC

Set

setRe

Set

Clock

J

C

K

S

R

Q

Q

1

QD

input

QA 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 QB

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 QD

QC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

Physics 310

Lecture 8b – Digital Circuits

Alternatively, rather than holding the J & K inputs high for all chips and just manipulating the

„clock‟ signals, we could give all the chips the same clock signal and manipulate their J & K

inputs in order to make them „count.‟ This, with all chips running

off the same clock, would be synchronous. Here‟s an example of a

synchronous shift / ring counter. (Warning: C, R, and S get shoved

all around in these diagrams in order to make the external wiring

look the simplest, don‟t take the geometry too literally.)

R

e

c

all the logic table:

Also recall that a NOR gate‟s output is Hi only if both inputs are Lo. The outputs cycle as

 0 1 2 3 4 5 6 7 0 1 …

The text, on pages 276 through 277, gives a variety of different counters – they count up, they

count down, they count through 8 states, they count through 16 states,…

While one can construct a counter from flip-flops and gates, there are also single-chip counters

such as the 74192 which you can set to count just to 1 or up to 9. Running two of these in series

allows you to count to 99 – one of them handles the 1‟s place while the other handles the 10‟s

place and gets updated each time the first one cycles through all its digits.

12-3 Digital Read-Outs

At this point, before getting more into actual circuits that use these chips, the book takes a little

digression about ways of displaying the logic values. There are three basic types of lights:

incadenscent (which takes a lot of current), florescent (which takes a large voltage) and Light

Emitting Diode, LED, which takes neither a large current nor a large voltage. In lab last week

you already employed these to visualize when the 555‟s output was high or low. For reference,

the book shows sample wirings using the three different types of lights.

C = Hi tn tn+1

J K Qn+1 1nQ

0 0 Qn
nQ

1 0 1 0

0 1 0 1

1 1
nQ Qn

Clock

J

C

K

Q

Q

1

O

R

O

R

J

C

K

Q

Q

O

R

O
R

J

C

K

Q

Q

QA

QB

QC

input

QA 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 QB

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 QC

Physics 310

Lecture 8b – Digital Circuits

LED‟s come in a small range of colors: red, green, yellow, blue. Orange can be achieved with a

diode that‟s built for red when biased one way and yellow another, then an A/C signal would

give the appearance of orange.

A third common type of display is LCD. It doesn‟t actually generate light, but reflectivity can be

varied by getting liquid crystals to line up or not. A very common display that uses LCD‟s is the

Seven-Segment Display as is featured in those nifty digital watches.

When the different input lines go high, the different segments get activated. One of these is

often accompanied by a BCD-to-seven-segment to take something in binary and light up the

appropriate decimal digit. As the labels suggest, if a binary number is represented on the top left

lines, then the appropriate combination of segments get lit up. In the spirit of „waste not, want

not‟, this can easily make 16 different shapes, and so represent 0 – 15, but the shapes used for 10

and above are not ones we typically use.

LD = Lo: Locks the Display regardless of how the output may subsequently change

Bl = Hi: Blanks the display

Inpu

t a Inp

ut b

Out

put

+Vcc

Inpu

t a Inp

ut b

Out

put

+Vcc

Open

collector

Inpu

t a Inp

ut b

Out

put

+Vcc

Open

collector

a

b

c

g

d

e

f

a

b

c

d

e

f

g

+VDD
+VDD

a

b

c

d

e

f

g

2
0

2
1

2
2

2
3

LD

Bl

Ph

4543

Physics 310

Lecture 8b – Digital Circuits

Ph = Hi: flips the “Phase” of the output logic (what would be Hi is Lo and vice versa).

Here‟s an example using these two chips together:

Binary Decimal

1010 = 5

+VDD

a

b

c

d

e

f

g

2
0

2
1

2
2

2
3

LD

Bl

Ph

4543

a

b

c

g

d

e

f

+VDD

1

1

0

0

1

1

1

1

0

0

0

