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9-6 Mathematical Functions:  Addition, Differentiation, Integration 

One of the swell things about op-amps is that you can build circuits with them that perform 

mathematical operations.  On the one hand, that‟s a cute novelty item – a circuit that will add, 

integrate, or differentiate for you.  No matter how non-analytical the input function may be, the 

circuit happily integrates or differentiates it for you!   On the other hand, these are very common 

signal-processing operations; within the context of a large circuit, you‟ll often find little „adder‟, 

„integrator‟, and „differentiator‟ blocks. 

9-6.1 Addition 

We‟ll start with the simplest circuit, the adder. 
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Since the Op-Amp itself draws no current, but forces its negative input to ground, we 

know that the current flowing through the gain resistor is 

 

3

3

2

2

1

1

321

0000

R

V

R

V

R

V

R

V

iiii

F

out

f

 

 Or 

 
3

3

2

2

1

1

R

V

R

V

R

V
RV Fout  

 Now, in the mathematically simplest case, say you choose your four resistors so 

they all have the same numeric value: 321 RRRRF .  Then this expression reduces 

to  

 321 VVVVout  

So (aside from inverting, with the negative sign) you‟ve just added the values on each of 

the three input lines to give the output value. 
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Of course, you could also weight each input signal differently.  For example, say you 

wanted Vout = -(1*V1 +10*V2+100*V3)  that‟s easily achieved by choosing the right 

resistors.  

 

9-6.2 Integration (I do) 

We go back to the simple inverting-amplifier configuration and replace the gain resistor 

with a capacitor to have this. 
 

 vout  

R1 

- 
 

+ 

 

C 

 Vin  

Equivalently

 

 vout  

R1 C 

 Vin  

 

 

Looking at the flow of charge, 

 

dt

dq

R

v

i
R

v

cin

R

0
   

(I‟m using lower case since we‟re likely considering time varying 

voltages, currents, and charges.) 

Where what I mean by qc is the charge on the left side of the capacitor.   

 

Now, as for the capacitor,  

0outc

cc

vCq

vCq
  

(as with the sign in Ohm‟s law, books usually ignore the sign here, 

but it means that if you‟ve got a positive charge on the left, then 

you‟ve got a voltage drop from left to right.) 

  

So, substituting this in for the charge in the derivative, 

dt

dv
CvC

dt

d

dt

dq
i

R

v out

out

cin )0(
0

1

 

Flipping around to solve for Vout gives 
t

inCRout tdtvtv
0

1 )()(
1

 

The output is the (scaled and inverted) time-integral of the input! 

Remember the simple RC circuit which only approximated an integrator for the right 

range of frequencies.  Now, this circuit is an integrator (to as many sig figs as 1/A = 0 and as 

long as the frequency isn‟t insanely high). 
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9-6.3 Differentiation (They do) 

If you flip the R and the C, you flip the job this performs, form integrating to 

differentiating. 
 

 vout  

R 

- 
 

+ 

 

C 

 Vin  

 Equivalently

 

 vout  

R C 
 Vin  

 

 

 

Again, being specific about signs, the relationship between a capacitor‟s charge and 

voltage drop is  

 cc vCq  

In this case,  

inc vv 0  

 so,  

cin qCv  

While the relationship between a resistor‟s current and voltage drop is 

R

v
i R  

Where the current flowing through the resistor (implicitly to the right) equals the rate of 

charge flowing onto the capacitor (from the left): 

dt

dq
i c  

 

dt

dv
RCv

dt

dCv

dt

dq
i

R

v

in

out

inLeftout

 

Tada! The output voltage is equal to the (negative) derivative of the input voltage, times 

RC. 

 

 

9-8 Filters 

We‟ve seen how an Op-Amp can be used as an Integrator and how one can be used as a 

Differentiator.  Now, you‟ve previously seen similar combinations or R‟s and C‟s (without the 

Op-Amps) in “RC” filters.  You can see that the Integrator and Differentiator can perform a 

similar function – Preferentially „passing‟ either high or low frequency signals.   

 

Differentiator – High-Pass Filter / Amplifier 

 The differentiator‟s output and input are related by  

dt

dv
RCv in

out  
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 So, if the input voltage varies sinusoidally, )sin()( tVtv inin
, then the output would be   

.cos)()( tVRCtv
dt

d
RCtv ininout  

Notice that the bigger  is, i.e., the higher the frequency is, the bigger the output signal 

is.  More specifically,  

inoutRC

inoutRC

VV

VV

1

1

 

This is essentially a High Pass filter and an amplifier combined. 

 

Integrator – Low-Pass Filter / Amplifier 

On the other hand, the Integrator‟s output and input are related by   

  

t

inCRout tdtvtv
0

1 )()(
1

 

Again, if the input voltage varies sinusoidally, )sin()( tVtv inin
, then the output would 

be 

tVtdtvtv inCR

t

inCRout cos
1

)()(
11

1

0

1  

In this case, the smaller , i.e., the lower the frequency is, the bigger the output signal is.  

More specifically, 

inoutRC

inoutRC

VV

VV

1

1

 

 This is essentially a Low Pass filter and amplifier. 

 

9-8.1 Integrator-Differentiator 

Now, let‟s say we put the two together!  A Low-Pass Filter Integrator and a High-Pass Filter 

Differentiator:  we get a Band – Pass Integrator-Differentiator.  We might qualitatively guess 

that most frequencies come through weakly, but right around the sweet spot of 
RC

1
the 

signal comes through loud and clear.  Let‟s see how this plays out. 

 
 

 vout  

Rf 

- 
 

+ 

 

C1 

 Vin  

R1 

Cf 

 or 

 

 vout  
R1 C1 

 Vin  

Rf 

Cf 

 

 

This circuit has a complex enough mixture of impeding elements, resistors and capacitors, that 

we‟re going to want to use Phasors to analyze it. 
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Following the current flow across the circuit, 
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  Where, the two elements in series add up to 
1

1
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  While the two elements in parallel add up to 
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So, 
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In Amplitude-Phase notation, that‟s 
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Obviously, the denominator minimizes (the output voltage maximizes) and the phase shift is just 

the -1 that‟s out front, at the frequency o for which  

  0
1

1
1 of CRofCR  or 

ff

o
CRCR 11

1
 

There we have the predicted sweet-spot frequency.   

 

A plot of Vout vs. frequency would look something like 

 

 

 

 

 

 

 

 

A common measure of a peak‟s width is the “full-width at half-max.”   As the 

name suggests, it‟s how far apart (in frequency, in this case) are the two points at which 

the curve drops to half its maximal value.  So, it can be found by returning to the 

expression for Vout and setting its amplitude equal to half the peak, then solving for the 

frequencies that satisfy that condition – the difference between these two frequencies is 

the width of the peak.  Skipping all that work, this peak‟s width is 

22

1

2 6 of  where 
ff

f
CR

1
and
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1

1
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;  

1

1
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C

C

R

R
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f

f

V
V  

outV  
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max.2
1

outV   
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in those terms, 
1

2

fo
 

One thing we can read from this is that, in absolute terms, the higher the circuit‟s 

designed pass-frequency, o, the wider the peak, but in relative terms (relative to the 

pass-frequency), the peak isn‟t exactly dependent on the frequency, rather it depends on 

how well balanced f and 1 are, with a minimum if f = : 

 861

1 f

f

o

  

 

9-8.2 Twin-T Filter 

Strictly speaking, this would have fit better in Ch. 2; however, it‟s good review (test 

coming up) and we‟ll use it with an op-amp in a moment.  First we‟ll consider a Twin-T 

filter all by itself (that we could have done back in chapter 2) and then we‟ll see how it 

can be incorporated in an Op-Amp circuit. 

 

All by itself, the Twin-T filter has an impedance that peaks at a specific frequency – that 

means it‟s a notch-pass filter.  That is, the output spectrum looks like a notch was cut out 

of it – most frequency signals pass without a problem, but not right around o.  

 
 vout  

R 

C 
 Vin  

C 

R 

2C 
R/2 

            

 

 vout  R 

C 

 Vin  

C 

R 

2C 

R/2 

 
Qualitatively, there are a high pass filter (blue) and a low pass filter (red) in parallel.  So 

a signal with a high frequency is blocked on the red branch, but, no matter, it passes 

along the blue branch.  Similarly, a low-frequency signal is blocked on the blue branch 

but passes along the red branch.  In contrast, a signal with frequency around 
RC

o

1
 

has trouble down either branch. 

Quantitatively, it‟s easier to analyze the circuit if we look at it like this (all the same 

connections, just twisted around a bit.) 

Or, 

unwrapping 

it a bit 
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R 

C 

C 

R 2C 

R/2 

 Vin  

 vout  

     

 

a 

b 

c 

d 

 
 

Not counting vin and vout, we have 4 equations and 4 unknowns (the currents), so a 

relationship can be constructed for vout in terms of vin, R, and ZC.  Without going through 

all the motions, that relationship is 

o

o

j

v
v in

out

4
1

       

(based on eq‟n 3-82 and Fig. 3-17 of J.J. Brophy‟s Basic 

Electronics for Scientists, where the C‟s and R‟s assume 

the values to match Fig 9.17 of Diefenderfer‟s book.) 

or, in amplitude – phase notation,  

o

o

o

o

j

in

out e
v

v

4
tan

2

1

4
1

  

where 
RC

o

1
. 

 

 Strikingly, vout doesn‟t just get small at o; it vanishes!  For that matter, when we‟re far 

from o, vout approaches vin.   

 

 

 

 

 

 

 

 

 

inout VV max.
 

outV  

o  

inV
2
1   

One way to tackle this is 

to consider four loops: 

Applying the Loop Rule to each gives 

a) 2/)( Riiziiv cacbain   where 
C

jZC

1
 

b) CabCcbdbb ZiiZiiRiiRi0  

c) 2/Riiziiv accbcout  

d) Cdbdout ziRiiv 2  
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A similar full-width at half-max analysis to that used for the Integrator-Differentiator 

Filter reveals a width of o
3

4
, or a relative width of  

3

4

o

which is slightly 

narrower than the best that the Integrator-Differentiator could do (when f1 ), 

2

4
8 . 

 

Impedance.  In terms of impedance, the impedance of Twin-T filter vanishes far from o 

and explodes at o 

 

0TZ  for o or  o  

TZ as o  

Frequency Switch.  This is kind of like a switch: for most frequency signals, the 

switch is closed – allowing the signal to pas; for signals with frequency o, the 

switch is flung open – blocking the signal. 

 

With an Op-Amp.  This Twin-T filter could be used on its own, or it could be used in 

conjunction with an Op-Amp (that‟s the chapter we‟re in, after all).  Again, the reason for 

going this rout rather than using a simple Integrator-Differentiator configuration is that 

the Twin-T is more selective (narrower band).   

 

For thinking how it might work with an op-amp, it‟s handy to think in terms of the 

impedance.  Let‟s look back at the simple inverting amplifier configuration. 

 

 vout  

R1 

- 
 

+ 

 

Rf 

 Vin  

 
Now, say we augment R1 with a Twin-T,  

 

 

 vout  

R1 
- 
 

+ 

 

Rf 

 Vin  Twin-T 

ZT 

 
So, the output voltage should be 

 
T

f

inout
ZR

R
VV

1

 

 

Now, for frequencies far from o, the Twin-T is as good as not-there (no impedance), 

and, just as usual,  
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 vout  

R1 

- 
 

+ 

 

Rf 

 Vin  

1R

R
VV

f

inout
 when o or  o  

 But when in the vicinity of o the impedance blows up, killing the output 

 

 

 vout  

R1 

- 
 

+ 

 

Rf 

 Vin  

0
f

inout

R
VV  

 

 This isn‟t too surprising, we essentially have a Twin-T in series with an Inverting 

Amplifier, so of courses the amplifier‟s signal cuts out when the Twin-T kills its input signal. 

  

 On the other hand, we could augment the gain resistor, Rf, with the Twin-T. 
 

 vout  

R1 
- 
 

+ 

 

Rf 

 Vin  

Twin-T 

ZT 

Now,    
1

/

R

RZZR
VV

fTTf

inout  

Right around o , ZT goes infinite, so it‟s like having an open switch above the gain 

resistor.  In that case, the we simply have  

 

 

 vout  

R1 
- 
 

+ 

 

Rf 

 Vin  

1R

R
VV

f

inout As if the Twin-T weren‟t there. 
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Far from this frequency, the Twin-T has no resistance, so we‟ve essentially got 

 
 

 vout  

R1 
- 
 

+ 

 

Rf 

 Vin  

Vout = 0 

 

So the gain resistor is shorted out and we‟ve got a follower with an input of ground.  

Sure, there‟s a Vin on the other side of R1, but if the Op-Amp‟s doing it‟s thing, it‟s 

forcing V-=V+ and V+ = 0. 

 

The advantage of using a complicated Twin-T filter rather than a simple Integrator-

Differentiator one is that, as already noted, the Twin-T filter is more selective: 

 

9-7 Current Amplifiers 

The point of many circuits is manipulating a “signal” that is represented by a voltage – 

multiply the signal, integrate the signal, add the signal to another one…  Sometimes 

though, the salient property is a current, not a voltage.  For example, your measure a 

current, and you want to translate that “signal” into a voltage (for adding, integrating,…), 

or perhaps your building a power supply so you want to be able to boost up a current.  So, 

here are a couple of op-amp circuits that focus in on the current rather than the voltage.  

 

9-7.1 Current to Voltage Conversion 

Some transducers output a current (ex. near and dear to my heart, the STM senses a tiny 

current between a sample and a sharp, metal tip.)  Let‟s look at how the current input and 

voltage output are related. 
 

 vout  

R 

- 
 

+ 

 

 Iin  

 Vref  

gap 

 Vsample  

which is equivalent to 

 

 vout  

R Iin 

 Vref  
 

Here, for the sake of generality, I‟ve set the + terminal at “Vref”, that „reference‟ voltage 

could be ground (as in the previous examples), but it needn‟t be.  I should also point out 

that there is effectively a great big (mega-ohm) resistor between the sample and the 

tip/input – if there weren‟t we‟d have an unpleasant tug of war between Vsample and Vref – 

the sample and the op-amp would be trying to make the – terminal have two different 

voltages. 

RIVVRIVV inrefoutinrefout  
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9-7.2 Current-to-Current Amplifier 

Say you want to amplify a current. 
 

 Iout  

Rf 

- 
 

+ 

 

 Iin  
RL 

Rs If= Iin Is 

equivalently 

 

 vout  

RL 

 Rf  

 Rs  

 Iin  
 Is  

Iout 

 

 

While the actual circuit may not be crystal clear, the equivalent one is.  Looking at that, 

from the Node Rule:  

sinout III ,   

 From the Loop Rule: 

   

s

f

insssfin

sf

R

R
IIRIRI

VV

 

 Putting this together with the Iout expression gives 

   

s

f

inout

s

f

ininout

R

R
II

R

R
III

1

 

 So, how much bigger the output current is than the input current depends on these two 

resistances.  Rather remarkably, the current through the load resistor, Iout, is independent of the 

load resistance (for an ideal op-amp anyway), since the op-amp will adjust its Vout value to be 

whatever it needs to be in order to maintain equal voltage it its two input terminals, V+=V-. 

 

9-10 Real Op-Amps 

For a while now, we‟ve been idealizing the Op-Amp: it draws no current( inZ ), it can 

source as much current as you want ( 0outZ ), it has infinite gain, ( A ), and there‟s no 

limit to how big Vout can be.  In most applications, they‟re as good as true, but none are 

absolutely true. Actually, when we talked about the Comparator, we admitted and made use 

of the fact that Vout was bounded by the + and – power lines.  Now we‟ll amend the other 

idealizations and consider their impact on circuit design.  For a given make & model of Op-

Amp, the manufacturer produces documentation that, among other things, characterizes these 

imperfections – to help the user select the appropriate Op-Amp for his/her application. 

 

9-10.1 Gain 

Let‟s return to the simple Inverting Amplifier, and analyze it a little more rigorously to 

see just how the output depends on the gain value, A – something that‟s often on the 

order 10
4
, but we usually like to idealize as infinite.  How much does the difference 

between infinity and 10
4
 usually matter? 
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 vout  

R1 

- 
 

+ 

 

Rf 

 Vin  

 

Recall that, when we had assume A was infinite, we‟d ended up with 
1R

R
VV

f

inout
.  

Now we‟ll see how good an approximation that is. 

 

If we still allow that the op-amp draws negligible current (we‟ll address that later), then  

f

outin

R

VV

R

VV

1

  

 But VAVout 0  

 So 

AR

Rf

in

AR

R

f

inout

f

outoutinout f

f R

R
V

R

R
VV

R

AVV

R

VAV
1

1
1

11
1

1

11
11

1//
 

 Where the last step came from a binomial expansion.   

Since most Op-Amps have an A of about 10
4
, as long as 10

1R

R f
, assuming A is infinite 

overestimates Vout by only about 0.1%. 

 

9-10.2 Output Impedance 

We generally assume that our op-amp has no output impedance, thus, it can source as 

much current as is required in order to maintain the prescribed output voltage, regardless 

of what‟s down-line from it.  In reality, Op-Amps often have a few k  of output 

impedance.  While this number sounds pretty non-negligible, we‟ll see that, in the end, 

the effect in a typical Op-Amp circuit is pretty insignificant.  The simplest way to model 

an Op-Amp that has output impedance is as an ideal Op-Amp with a resistor connected 

right at its output (this is the same way we model a “real” battery – an ideal one in series 

with a resistor). 

Let‟s see the effect this resistor has on a simple Op-Amp circuit, say, a follower. 

 

 

 

 

 

Ideal Follower 

Now, a follower with the ideal no output impedance, would have an output of 

A

in

outoutinout

V
VVVAVVAV

11
 and under the further idealization 

that A is infinite Vout = Vin. 

 

- 
 

+ 

 

- 
 

+ 

 

Vin+ 

Vout Real  
Vin+ 

Vout Ideal 
V‟out 

Zout 

The basic relationship for an Op-Amp is  

VVAVout  where 0V  in this circuit 
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Real Follower 

How do things look for the real follower? 

outinout VVAVVAV '   

but outoutoutout ZIVV '  

So 

A

Z
I

V
V

ZIAVAVZIVVAZIVV

out
out

A

in
out

outoutinoutoutoutoutinoutoutoutout

11

1'

1

 

Again, in the limit that A is infinite, the output resistor has no effect on the 

circuit‟s operation – the voltage it outputs is the same, Vin.  Backing off from that 

limit, apparently it‟s not Zout that matters, it‟s 
A

Z
Z out

oc
1

..
which defines the 

output resistance of the full, closed Op-Amp circuit. 

 

While Zout may well be 5 k , that divided by an A of 10
4
 spells a resistance around only 

0.2 ! 

 

9-10.3 Input Impedance 

Normally we approximate the Op-Amp‟s input impedance as infinite – no current gets 

drawn into the device.  Of course that‟s not completely true. For example, in reality, 

there‟s an internal impedance between the two inputs of about 50 M  for a bi-polar-

transistor based Op-Amp, or a whopping 10
12

 for a J-FET based one!  But just as with 

the Output Impedance, the specific impedance hardwired in the Op-Amp is only part of 

the story.  What‟s most relevant is the Op-Amp circuit’s input impedance.  For example, 

if you‟re using the Op-Amp + some resistors as an Inverting Amplifier, then what you 

really want to know is the whole Inverting Amplifier‟s input impedance, not just that of 

the Op-Amp all by itself.  Similarly, and a little more simply, if you‟re using the Op-Amp 

plus a wire as a Follower, the Follower‟s Input impedance is what you want to know. 

 

Follower Input Impedance.  How does the input impedance of a Follower circuit using 

a real Op-Amp differ from that using an ideal Op-Amp?   

   

  Ideal     Real 

 

 

 

 

 

 

 

Ideally, the Op-Amp draws no current, regardless of Vin‟s value, so the input impedance 

for the circuit is infinite. 

Really, there‟s a resistive path between the two inputs of the Op-Amp, so the Follower 

will draw some current and the input impedance isn‟t infinite, but is it close enough? 

  

- 
 

+ 

 

Vin+ 

Vout 

Iin 

- 
 

+ 

 

Vin+ 

Vout Zint 

Iin 
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On the one hand, )( VVAVout , or, in this case,  

Ainoutoutinout VVVVAV
/11

1)(  

On the other hand, int)( ZIVV in , or int)( ZIVV inoutin  

Eliminating Vout from these two relations gives 

 

AZIV

ZIV

ZIV

ZIV

VZIV

inin

inAin

inA
A

in

inAin

Aininin

1

1

int

int1
1

int/11
/1

int/11
1

/11
1

int

 

So, the factor in brackets defines the input impedance of the Follower, 

AZZ Followerinput 1int. .  As if Zin weren‟t big enough, when you multiply it by an A on 

order of 10
4
, you get a Follower input impedance that‟s just plane huge / close enough to 

infinite for most purposes!  For reasonable input voltages, the input currents can easily be 

down in the pA range. 

 

 

Inverting Amplifier Input Impedance.   

Ideal      Real 

 

 vout  

R1 

- 
 

+ 

 

Rf 

 Vin  

  

 

 vout  

R1 

- 
 

+ 

 

Rf 

 Vin  
Zint 

 
 

Thanks to the Golden Rule, we‟d been saying that an Ideal Inverting Amplifier‟s logic is 

something like 

 

 
 vout  

R1 Rf 
 Vin  

 
Which would mean  

1IRVin  

So the ideal input impedance is R1.  What‟s the real Inverting Amplifier‟s Input 

Impedance? 

 

If you go through the same kind of analysis as for the Follower, you get 

int

int

11
11

1
1

1
1

1.. Z

R

A

Z

R

A

AmpInvinput

f

f

RRZ .  With A ~ 10
4
, this differs from the ideal 

circuit‟s result, R1, by only about 0.01%.  
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9-10.4 Input Bias & Offset Current 

Going hand-in-hand with an internal impedance is a corresponding current that is drawn 

into the input terminals.  Since how much is drawn will vary from application to 

application, there‟s no concise way to for the Op-Amp manufacturer accurately and 

quantitatively represent in the part‟s data sheet.  So they settle for a couple of 

measurements made under a specific condition, a measurement that‟ll give you a ballpark 

feel for the general behavior.   

Input Bias Current, IB, is the amount of current drawn into the inputs in order to 

give Vout=0.  Ideally, that would be zero, but appreciating that there is an internal 

resistance, you can appreciate that some current gets drawn.  Depending on the make & 

model, an Op-Amp‟s Input Bias Current will be somewhere in the nA to pA range.  

Okay, it‟s already an unfortunate reality that IB is not zero, something that we 

qualitatively model by imagining a (big) resistor connecting the two inputs, but think 

about what‟s really under an Op-Amp‟s hood – a mess of transistors.  So perhaps we 

shouldn‟t be surprised that all the current that‟s, say, drawn in at the –Input terminal, 

doesn‟t make it back out the +Input terminal.  So the IB value quoted is usually the 

average of the currents at the two inputs. 

Input Offset Current, IOS, is then the difference between the bias currents at the 

+ and – input terminals.  This is usually around 10% of the Input Bias Current. 

   

9-10.5 Input Offset Voltage 

It‟s hard to manufacture an Op-Amp for which the fundamental rule, )( VVAVout , 

is spot on.  Just speaking mathematically, you might imagine the true relationship being 

more complicated but representable via a Taylor Series expansion as something with non-

negligible zero-order correction term and a smaller first-order (and negligible higher 

order terms.)  Physically, the first correction would correspond to an Input Offset 

Voltage, so that, even when the two inputs are grounded out, there will be an output; 

we‟ll deal with that in this section.  The second correction would correspond to un-equal 

gains for the two inputs; we‟ll deal with that later, in the Common Mode Rejection Ratio 

section. 

 

So, ideally, when 0VV , we‟d expect 0outV , but unfortunately reality‟s not so 

nice.  There‟s a slight offset, that is, 0outV when OSVVV . VOS is the “Input Offset 

Voltage”, the voltage difference you‟d need to apply across the inputs to really zero the 

output.  This can be in the mV range.  For some applications that‟s as good as 0; for 

others it‟s pretty significant.  Fortunately, you don‟t have to just live with it.  If there‟s a 

consistent offset of a few mV, fine apply that extra voltage and the problem‟s fixed.  

Many Op-Amps are designed with a couple of additional inputs to help with that.  You‟ve 

got your two signal inputs, your two power-line inputs, your one output, and two more 

“offset-voltage trim” inputs. 
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The little arrow means the resistor is a trim pot, i.e. variable resistor, that allows the user 

to tweak things until they‟re just right and the Offset Voltage is 0.  

 

9-10.6 Common Mode Rejection Ratio 

The flip-side of saying that 0outV when OSVVV , i.e. that you need to apply an 

offset voltage to zero the output, is saying that when you don’t apply the offset voltage, 

that is, when  VV , then 0outV .  It‟s easy to take care of this at, say 0VV (or 

some other single chosen voltage value) by using the offset circuitry of the above picture; 

however, that doesn‟t handle the linear correction term previously alluded to:  the gains at 

the two terminals aren‟t exactly the same, that is,  

)( VAVAVout  

where AA , .   

Since they are awfully close to equal, it may be more telling to write it as  

  )()( VVaVVAV CMout  

    Where )(
2
1 AAA and )( AAaCM .  

So the first term is what we want, and the second term is the error, which we can say is 

due to a small but non-zero “common-mode gain”, acm.  Sure, the trim-pot can be used to 

eliminate this at one and only one value of VV , but for a different value, it‟s back.  

Unfortunately, there‟s no completely getting rid of this, so the best we can do is 

characterize it and live with it.  The way this is typically characterized is in ratio to the 

regular gain, A:  

Common Mode Rejection Ratio, 
cma

A
CMRR .  This is usually whopping big, so 

it‟s more common to quote the “Common Mode Rejection, 
cma

A
dBCMR 10log20 .  

For a good Op-Amp, this might be 120dB, for a so-so Op-Amp this might be 70dB.  That 

means that the desirable gain, A ranges from 6 to 3.5 orders of magnitude larger than the 

undesirable acm. 

Not that Important (usually).  To put this in perspective, qualitatively, the effect of this 

“common-mode gain” is as if the op-amps gain changed, on order of 0.1 to 0.0001% with 

the size of the input signal.  Since most Op-Amp applications are pretty insensitive to the 

exact value of the gain anyway (it suffices that it‟s approximately infinite), these slight 

changes won‟t matter at all, not for most applications. 

   

 

9-10.7 Slew Rate 

You may remember back when we first met transistors, it takes time for them to respond 

to changing applied voltages, time for the junction region to change, time for charges 

formerly happy in donors or conduction band to fall into acceptors.  Well then, a mess of 

transistors, under the hood of an Op-Amp, is going to take time to respond to changing 

input voltages.  Say you suddenly change the input voltages and watch the output voltage 

as it changes.  The rate at which it changes, usually a few V/ s, is the Slew Rate.   
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Say you‟ve got an Inverting Amplifier circuit, given this limitation on how quickly the 

output can change, divide out the circuit‟s gain, and you‟ve got an upper limit on how 

quickly a changing input it can process correctly.  The rate at which the output changes is 

easily related to the rate at which the input changes: 
dt

dV
G

dt

dV inout .  So, if we need to 

keep SlewRate
dt

dVout , that means keeping 
G

SlewRate

dt

dVin .  For example, a slew 

rate of 1 V/ s, and a gain of 10 would mean it couldn‟t faithfully amplify anything faster 

than a 1Volt-amplitude sine wave at 16 kHz.  Continuing with that example, if, instead, 

you wanted to have a gain of 20, the limiting frequency would be only 8 kHz.  A gain of 

40 would imply a limit of 4 kHz, etc. 

 

 

9-10.8 Frequency Response 

 

So there‟s a linear relation between the gain and frequency a given Op-Amp can handle, 

on account of its limited Slew Rate.  Of course, the Op-Amp doesn‟t explode or even shut 

down if the signal‟s frequency exceeds the limit for the Gain the Op-Amp circuit is wired 

for.  What does happen, to first order, is the actual gain reduces.  Maybe you have things 

wired for a gain of 80 at 4kHz, but it‟s going to give you something more like the gain of 

40.  What‟s happening is the output just can‟t keep up with the input signal; the input 

would have it, say grow 2V in a time interval, but it only makes it 1V.  To second order, 

if you consider that the instantaneous rate of a sine-wave‟s changing is time dependent  

tVtV
dt

d
cossin  

Then you‟ll recognize that, at some instants the rate of change is slow enough for the op-

amp to handle while, at other instants it isn‟t.  That means that, not only does the output‟s 

shrink in over-all amplitude, but it also distorts – an input of a perfect sine wave gives a 

less-amplified and less-perfect almost-sine wave output. 

 

I should point out that you can easily hear a 4kHz or 8 kHz sound (16kHz is pushing it), 

so a good stereo needs “audio quality” Op-Amps with high slew rates.   

 


