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Mon. 4/19 Demonstrate Projects Project Report & Notebook 

 Final Exam:  Thursday April 22nd 3:00 p.m.  or  Saturday April 24th 9:00 a.m. / 12:00 noon (we‟ll choose as a class) 

 

Announcements: 

 Parts have been ordered; they should be in later this week. 

 Most of you didn’t actually ‘turn in’ your project progress reports.  Please do so (I’ll 

make photo copies and return them). 

  

13.1  Intro: 

The microprocessesor is the natural conclusion of our study of digital circuitry.  This is where all 

the „thinking‟ or processing happens inside a computer or other common electronic devices.  At 

the time that the text was written, mircroprocessors were finding their way into our daily lives, 

off the desktop and into our cars, ovens, etc.  Today, they‟ve found their way into our constant 

companions – phones and mp3 players. 

 

13.2  Computer Arithmetic 

The book mentions Hexadecimal representation and bits (one data line) bytes (eight data lines) 

and nibbles (four data lines) as well as KB (2
10

) and MB (2
20

).  For our purposes though, it‟s 

probably not worth focusing much on these. 

Computers were originally for computing / calculating, and they still do a lot of this.  So a 

natural bridge from logic gates to computers (and microprocessors) is considering how these 

gates can be used to perform common computational tasks: addition, subtraction, and 

multiplication. 

Binary Addition 

You may recall that I‟d introduced the simple “half adder” just after we‟d met binary (to suggest 

that studying binary wasn‟t such a non-sequeter after studying logic gates).  Now I‟ll use the 

text‟s notation 
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Inputs Outputs 

Augend Addend Sum Carry 

A        + B       = C  2
0
 C  2

1
 

0        + 0        = 0 0 

0        + 1        = 1 0 

1        + 0        = 1 0 

1        + 1        = 0 1 

 

Alone, this is of fairly limited use – it can at most add two one-bit numbers and thus add one plus 

one to get two.  Before we consider how we‟d use gates to add two-bit binary numbers, lets first 

consider how we add „two-bit‟ decimal numbers.  It‟s probably been a long time since you‟ve 

actually thought through the words you were taught in your early days of addition: 

     1       1     1 

    1 6   1 6     1 6     1 6 

   +2 5    ->                  +2 5    ->  +2 5              +2 5     

             1     3 1        3 1 

             4  1   

We essentially do the same thing when adding a two-bit binary number: we first add the lowest 

bits 2
0
, in the process we generate the answer‟s lowest bit, and the “carry” which we carry over 

to add to the sum of the next lowest bit, and so on until we don‟t have any more bits to add. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 So, we add the 2
0
 bits and carry to the 2

1
; we add the 2

1
 bits and then add the carry in and 

“six plus five 

equals eleven, 

carry the one” 

“two plus one 

equals three” 
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determine the carry out, then we add the 2
2
 bit, add the carry in and determine the carry out,… 

As for determining the “carry out,” the OR gate is because two additions determine the answer‟s 

2
1
 place value and either one of those (but not both) can be responsible for generating a carry to 

the 2
2
 addition.  The same thing happens when we add familiar decimal numbers.  Consider these 

two examples, again, spelled out as if we were in third grade, 

 

 

                    1       1 1  1  1  

    1 6 9               1 6 9     1 6 9  1  6 9 

   +2 5 3    ->                  +2 5 3    ->  +2 5 3           +2  5 3     …  

                 2        1  2     1  2 

               2  2 

Alternatively, if we‟d added 149 + 253, then we wouldn‟t be carrying to the 100‟s place until we 

added in the carry from the 1‟s place.  So, the carry to the next place can happen during either 

addition operation, but not during both (you only ever “carry the one” never “carry the two”.) 

 

In figure 13.4B, the book shows the inner workings of a 4-bit adder.  The exact logic used is a 

little different from that illustrated here, but it gets the job done.  With the help of some of the 

binary logic identities in chapter 11, one may be able to translate between the two; alternatively, 

the logic tables can be generated and compared.  

Binary Subtraction 

First think about how you do subtraction with multi-„bit‟ decimal numbers. 

   Borrow 1 from 3 to make 14   Borrow 1 from 7 to make 12 

 7  3  4                             7  2 (14)             7  2  (14)    6 (12)  (14) 

-6  4  8                                 -6  4    8             -6  4   8              -6   4       8   … 

                6        6 

So, we need a „borrowing‟ mechanism for our subtraction.  That has to essentially accomplish 

four things: a) subtract the value from the 2
n+1

 bit of the Minuend, b) add it to the next 2
n
 bit of 

the Minuend, c) only do this if the 2
n
 bit of the Minuend is less than that of the Subtrahend, and 

d) actually subtract the bits. 

Here‟s the circuitry that accomplishes these tasks for one bit. 
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Note: what the book confusingly labeled Bin, I‟ve labeled Ab: what the previous bit of A already 

borrowed from this one.  Let‟s see if we can reason out the truth table: 

Minuend 

A‟s 2
1
 

Subtrahend 

B‟s 2
1
 

Borrowed from 

A‟s 2
1
 by A‟s 2

0
 

Difference Borrowed by A‟s 

2
1
 from A‟s 2

2
 

0 0 0 0 0 

0 1 0 1 1 

1 0 0 1 0 

1 1 0 0 0 

0 0 1 1 1 

0 1 1 0 1 

1 0 1 0 0 

1 1 1 1 1 

 

Two’s-Complement Arithmetic 

From the perspective of minimizing the amount of hardware necessary, it would be nice to be 

able to handle subtraction with the exact same circuitry as we use for addition.  Of course, 

subtracting a positive number is the same as adding a negative number, so the real question is, 

how can we represent a negative number in binary such that when we use our adding circuitry 

we get the appropriate result. 

 

How do we need to represent a negative number?   

1. First off, we give up the Most Significant Bit as denoting a number, instead it tells us the 

sign of the number, in that way we can represent both positive and negative numbers.  

The price we pay is that we have smaller range of numbers that we can represent.  Okay, 

that sounds reasonable enough.  Now, given that,  

2. We “complement” all the bits – replace 1‟s with 0‟s and vice versa (easily done with 

inverters on the bit‟s lines.) 

3. We add 1 to the last bit (easily done with our addition circuitry.) 

 

First, let‟s perform this operation a few times, and then see that the resulting representation of a 

negative number adds to give the right answer. 

 

Represent -63:   Represent -28: 

   

63 = 0011 1111  28 = 0001 1100 

63 = 1100 0000  28 =1110 0011 

_________   +1  __________+1 

-63=1100 0001  -28=1110 0100 

 

Now, let‟s add a negative number to a positive one: 

 

     63  =     0011 1111 

+(-28) =     1110 0100 

     35 = (1) 0010 0011 

(we just ditch the extra „carried‟ 1)   
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Chips like the 7483 can perform this task, they have „preconditioning‟ input line that tells them 

whether or not to form the 2‟s-complement (and thus whether or not to subtract). 

 

ALU – Arithmetic Logic Unit.   

A popular single chip has the basic logic and mathematical operations wired in, so depending on 

the „setting‟ inputs, it can be set to perform one of the basic logic operations (say, NAND two 4-

bit inputs) or mathematical operations (say, subtract them.) 

 

Multiplication 

Think about how you do long multiplication – that‟s how it‟s done in binary. 

       1           11          11        11        11  

                1  11 11 11  11           11 11 11 11 

   65     65   6 5   65   65   65  65   65   65   65   

×23   ×23 ×23     ×23      ×23      ×23           ×23 ×23 ×23 ×23 

                  5      85  85  85         85  85   85   85   85  

              +110    +110     +110         +110      +110   +110    +110 

             195 195           195 195 195   195 

       00           200      +200    +200    +200 

        395      395 395 

                  1100  +1100 

                   1495 

 

Okay, so we take the lowest bit of the one number and multiply all bits of the other number, then 

do the same for the next higher bit with an offset, and then add them.  We do the exact same 

thing in binary 

 

    65   =      01000001   

 ×23    =   ×00010111 

         01000001   

     010000010   

   0100000100 

             00000000000     

         +010000010000   

1495 =  10111010111 

 

Just looking at a simple two-bit multiplier, this could be performed like this: Note that the 

individual multiplications are simply AND‟s: 1*1=1, 1*0=0 whether “*” means AND or Times. 
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