

$$
\begin{aligned}
& \Delta V=-I R \\
& \frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \\
& R_{S}=R_{1}+R_{2}+\ldots \\
& j=\sqrt{-1} \\
& \text { M id-Term Prep } \\
& \Delta v_{C}=-Q / \mathrm{C} \\
& \text { Chapter 1-5 Equations } \quad C_{p}=C_{1}+C_{2}+\ldots \\
& P=I V \\
& \frac{1}{C_{S}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots \\
& d v_{C} / d t=-i / C \\
& \Delta \tilde{v}=-\tilde{i} \tilde{Z} \\
& \tau_{R C}=R C \\
& |A|=\left.\sqrt{\left(A_{\text {rea }}\right)^{2}+\left(A_{\text {mamaina }}\right)^{2}}\right|^{\text {Imaginary }} \quad\left\{\begin{array}{l}
\tilde{A}=|A| e^{j \phi} \\
A_{\text {imaginary }}
\end{array}\right. \\
& \tilde{A} \tilde{B}=|A| B \mid e^{j\left(\phi_{A}+\phi_{B}\right)} \\
& \tilde{A} / \widetilde{B}=(|A| /|B|) e^{j\left(\phi_{A}-\phi_{B}\right)} \\
& \Delta V \approx \frac{i}{C \cdot f} \quad r=\frac{\Delta V}{V_{D C}} \quad V_{p}=\sqrt{2} \cdot V_{r m s} \quad \frac{Z_{s}}{Z_{p}}=\left(\frac{N_{s}}{N_{p}}\right)^{2} \quad P_{p} \approx P_{s} \quad \frac{v_{s}}{v_{p}}=\frac{N_{s}}{N_{p}} \\
& I_{B}=I_{E}-I_{C} \\
& I_{C}=\beta I_{B} \\
& V_{E}=V_{B}-0.6 \mathrm{~V}
\end{aligned}
$$

M id-Term Prep

$$
\begin{array}{lc}
\Delta V=-I R[1 \mathrm{~V}=1 \mathrm{~A} \cdot \Omega] \\
P=I V[1 \mathrm{~W}=1 \mathrm{~A} \cdot \mathrm{~V}] & \text { Chapter } 1 \\
R_{P} & =\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots
\end{array} \quad R_{S}=R_{1}+R_{2}+\ldots
$$

-Reduce the combination of resistors shown in the circuit above to a single equivalent resistor.
-Calculate the current through the $3-\Omega$ resistor and the voltage across the $1-\Omega$ resistor when a $120-\mathrm{V}$ source is attached across the terminals.

Mid-Term Prep

Chapter 1

$$
\frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \quad R_{S}=R_{1}+R_{2}+\ldots
$$

$$
P=I V[1 \mathrm{~W}=1 \mathrm{~A} \cdot \mathrm{~V}]
$$

-Replace the network to the left of the slot by its Thévenin equivalent circuit. -If a $10-\Omega$ resistor is inserted in the slot, calculate the current through it.

M id-Term Prep

Chapter 2

$$
\begin{array}{ll}
\Delta v_{C}=-Q / \mathrm{C}[1 \mathrm{~V}=1 \mathrm{C} / \mathrm{F}] & C_{p}=C_{1}+C_{2}+C_{3}+\ldots \\
d v_{C} / d t=-i / C \quad \tau_{R C}=R C[1 \mathrm{~s}=1 \Omega \cdot F] & 1 / C_{S}=1 / C_{1}+1 / C_{2}+1 / C_{3}+\ldots
\end{array}
$$

-Determine the initial current through the resistor just after the switch is flipped.
-Determine the voltage across the capacitor 3 s after the switch is flipped.

M id-Term Prep
 Chapter 3
 $j=\sqrt{-1} \quad \tilde{A} \tilde{B}=|A||B| e^{j\left(\phi_{A}+\phi_{B}\right)} \quad \Delta \tilde{v}=-\tilde{i} \tilde{Z}$
 $\tilde{A} / \widetilde{B}=(|A| / B \mid)^{j\left(\phi_{\Lambda}-\phi_{B}\right)}$

A $4-\Omega$ resistor in series with a $7.96-\mathrm{mH}$ inductor is connected to a $110-\mathrm{V} 60-\mathrm{Hz}$ source.
-Determine the impedance of the circuit.
-Determine the current flowing in the circuit.

M id-Term Prep
 Chapter 4

$$
\Delta V \approx \frac{i}{C \cdot f} \quad r=\frac{\Delta V}{V_{D C}} \quad V_{p}=\sqrt{2} \cdot V_{r m s}
$$

For the rectifier circuit above:
-What would the peak voltage across and current through the resistor be without the capacitor? (You should take into account the voltage drops across the diodes.)
-With the capacitor in place how much does the voltage across the resistor vary? (You may assume that the current remains very close to its maximum value.)
-What is the ripple factor for the circuit?

M id-Term Prep Chapter 4

$$
\frac{v_{s}}{v_{p}}=\frac{N_{s}}{N_{p}} \quad P_{p} \approx P_{s} \quad \frac{Z_{s}}{Z_{p}}=\left(\frac{N_{s}}{N_{p}}\right)^{2}
$$

amplifier

An amplifier with an output resistance of $50 \mathrm{k} \Omega$ is going to be used to drive an $8-\Omega$ speaker. Determine the turns ratio for a transformer that will provide maximum power transfer to the speaker.
What is the power delivered to the speaker?

M id-Term Prep Chapter 5

$$
\begin{aligned}
& I_{B}=I_{E}-I_{C} \\
& I_{C}=\beta I_{B} \\
& V_{E}=V_{B}-0.6 \mathrm{~V}
\end{aligned}
$$

What is the current (I) through the load resistor as a function of R_{L} ?

