Homework Notes

HW1

Pr. 9 – just consider the Wheatstone

HW2

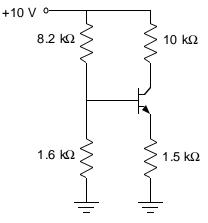
Pr. 6 - (try sketching V_{out} vs. t for square-wave V_{in} before designing RC)

HW3

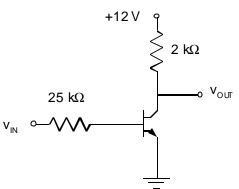
Pr. 7 - phase angel -30°

Pr. 8 - plot either v_{out}/v_{in} or $ln(v_{out}/v_{in})$ vs. ln(f)

HW4

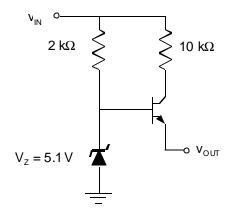

"A" Note: Assume all voltages are rms values, unless told otherwise.

Suppose a 6-V (rms) transformer (with 120 V, 60-Hz input) followed by a half-wave rectifier provides current to a 1-k Ω resistor. (THIS IS <u>NOT</u> AN OPTIONAL PROBLEM!)


- (a) What are the peak voltage across and peak current through the resistor? (Be sure to take into account the voltage drops across the diodes.)
- (b) What is the smallest filter capacitor that will insure that the voltage doesn't drop below 7 V? Give your answer in units of μ F. (You may assume that the current remains very close to its peak value.)
- (c) What is the ripple factor?

HW5

1. What is the approximate current in the $10-k\Omega$ resistor in the circuit below? (Hint: Very little current goes into the base of the transistor.)



2. For the circuit below, suppose $\beta = 50$ for the transistor and the input voltage (v_{IN}) is +2.5V?

- (a) What is the base current?
- (b) What is the collector current?
- (c) What is the output voltage (v_{OUT}) ?

3. For the circuit below, what is output voltage (v_{OUT}) if the input voltage (v_{IN}) fluctuates between 8 and 10 Volts?

Selected Answers:

- 1.
- $i_c \approx 0.69 \text{ mA}$ $i_B = 76 \text{ mA}, i_C = 3.8 \text{ mA}, v_{out} = 4.4 \text{ V}$ 2.

HW6

Pr. 3 - V_{out} in terms of V_{in}

 $\mbox{Pr.}\ 4$ - $\mbox{V}_{\mbox{out}}$ and input impedance

HW7

Pr. 2 - You're free to choose the value of one of the 3 unknown components; given that, you can determine the necessary values for the other two components.

HW8

Pr. 9 - It may be useful to first figure out an inverter, i.e., a NOT gate.

HW9

"A" An 8-bit, successive-approximation ADC has an input range of 0 to 5 V and has a clock frequency of 1-kHz.

- (a) What increment in the input will cause a 1-digit change in the output?
- (b) What range of voltages corresponds to the output of 00001101?
- (c) How long does it take the ADC to make the conversion?
- (d) If the input is a sine wave, what is the maximum frequency that it can have and still be adequately sampled?

Pr. 13 - The audible range is roughly 20Hz - 20 kHz

Pr. 17 - Also calculate for 0.5 V input