Things You Must Know

- (1) Superposition Principle
- (2) Boundary conditions for standing waves
- (3) Conditions for constructive and destructive interference
- (4) Rayleigh criterion
- (5) Photon model of light
- (6) Wave nature of matter

Potential Useful Equations

$$v = \lambda f$$
 $f = 1/T$

path difference = $d \sin \theta$

 $a\sin\theta_{1d} = \begin{cases} \lambda & \text{single slit} \\ 1.22\lambda & \text{circular opening} \end{cases}$

$$E = hf = \frac{hc}{\lambda}$$

$$\lambda = \frac{h}{p}$$

 $p \approx mv$

$K \approx p^2/2m$

Physical Constants

$c = 3 \times 10^8 \text{ m/s}$	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$	$hc = 1240 \text{ eV} \cdot \text{nm}$
$m_{\rm proton} = 1.7 \times 10^{-27} \text{ kg}$	$m_{\rm proton}c^2 = 938.27 { m MeV}$
$m_{\rm electron} = 9 \times 10^{-31} \rm kg$	$m_{\rm electron}c^2 = 0.511 { m MeV}$