## Chapter 7: PROPAGATION OF UNCERTAINTY

"She drew up plans of economy, she made exact calculations..."
--- Persuasion

### 7.1 INTRODUCTION

In many kinds of physics experiments, one would like to know the uncertainty in a quantity (call it $f$ ) that is calculated from directly measured and uncertain quantities $a, b, c, \ldots$; that is, $f$ is a function $f(a, b, c, \ldots)$ of the measured quantities $a, b, c, \ldots$. For example, this problem would arise in an experiment where we want to determine the uncertainty in an object's speed if that speed is calculated from uncertain time and distance measurements. The general problem of determining a calculated quantity's uncertainty is called the problem of propagation of uncertainties, expressing the idea that uncertainties in measured quantities beget uncertainties in quantities calculated from them. The goal of this chapter is to explore means for intelligently addressing this problem.

### 7.2 SOME NOTATION AND TERMINOLOGY

We will use the symbol $U[f]$ to refer to the experimental uncertainty in any quantity $f$, whether that uncertainty has been directly measured or calculated from the uncertainties in other measured quantities. If the quantity $f$ depends on measured quantities $a, b, \ldots$, then its uncertainty $U[f]$ should be related to the uncertainties in $a, b, \ldots$, that is, on $U[a], U[b]$, and so on, in some way that we should be able to calculate knowing how $f$ depends on these variables.

It turns out that the most useful quantity to know when dealing with the problem of propagation of uncertainty is a variable's fractional uncertainty, which is defined to be ratio of the variable's uncertainty to its measured or best guess value:

$$
\begin{equation*}
\text { fractional uncertainty of } f Q[f]=\frac{U[f]}{f} \tag{7.1}
\end{equation*}
$$

(The symbol $Q$ is meant to make you think "quotient."). This quantity is very closely related to the concept of percent uncertainty: to get the percent uncertainty from the fractional uncertainty, simply multiply by 100 . These ideas are so closely and simply related that we will often treat "fractional uncertainty" and "percent uncertainty" as if they were the same. As an example, say that the measured value of $f$ is $(5.96 \pm 0.60) \mathrm{cm}$. The fractional uncertainty of $f$ is then $Q[f]=0.6$ $\mathrm{cm} / 5.96 \mathrm{~cm}=0.10$, and its percent uncertainty is $10 \%$; that is, its uncertainty is equal to $10 \%$ of its best-guess value.

Note that whatever units a quantity $f$ might have, $U[f]$ has the same units, so the ratio $Q[f]$ of these quantities (and thus the fractional or percent uncertainty) will always be a unitless number. This observation is also a reminder that a quantity's uncertainty $U[f]$ and its fractional uncertainty $Q[f]$, while related, are not the same thing: if they were, they would have the same units.

### 7.3 A GENERAL APPROACH TO PROPAGATION OF UNCERTAINTIES

Think of the function $f(a, b, c, \ldots)$ as a machine that has a handle (like a control stick) corresponding to each of its input variables $a, b, c, \ldots$, and a big dial with a pointer that indicates the output value $f$. Each of the input variables affects the final value shown on the dial, so adjusting the positions of the handles individually or in combination will change the value shown on the dial.

Now if the input value $a$ has an uncertainty $U[a]$, then we can wiggle the handle corresponding to the variable $a$ back and forth from its most probable value $a$ by a positive or negative amount $\delta a$ in the range $|\delta a| \leq U[a]$ and still be consistent with the experimental data. This wiggling will cause the value of $f$ indicated by the dial to wiggle back and forth from its central value by a certain amount as well. Let us define $\delta f_{a}$ to be the (presumably small) change in the value of $f$ from its central value when $a$ is moved from its central value by $\delta a_{\max }=+U[a]$, corresponding to the upper extreme limit of $a$ 's uncertainty range, while the other handles are held constant. Similarly, let $\delta f_{b}$ be the change in $f$ when $b$ is moved from its central value by an amount $\delta b_{\text {max }}=+U[b]$ while the other variables are held constant, and so on.

Now, what is the uncertainty in $f$ when all of its variables are free to wiggle around within their uncertainty ranges simultaneously? The maximum distance $f$ could be from its central value is $\delta f_{\text {max }}=\left|\delta f_{a}\right|+\left|\delta f_{b}\right|+\left|\delta f_{c}\right|+\ldots$ if all of the input values happen to be simultaneously at whichever edge of their uncertainty range causes them to shift $f$ in the same direction. But this is fairly unlikely, because there is only roughly a $5 \%$ chance that any single variable will be at or beyond either limit of its uncertainty range; the likelihood that all of the variables are simultaneously at or beyond their limits on the correct side to push the value of $f$ in the same direction is quite small: $(0.05)^{2}=0.0025$ if there are two independent variables, $(0.05)^{3}=$ 0.000125 if there are three independent variables, and so on.

Because of this, a statistically more accurate estimate of the uncertainty of $f$ due to the uncertainties in all of its variables is

$$
\begin{equation*}
U[f] \approx \sqrt{\left(\delta f_{a}\right)^{2}+\left(\delta f_{b}\right)^{2}+\left(\delta f_{c}\right)^{2}+\ldots} \tag{7.2}
\end{equation*}
$$

(The proof is beyond our scope here.) Quantities whose effects are "added" by squaring, adding, and then taking the square root like this are said to be added in quadrature. Calculating $U[f]$ thus reduces to the problem of finding the changes $\delta f_{a}, \delta f_{b}, \ldots$ due to each variable separately.

This can be done easily in simple cases. Consider the special case where $f(a, b)=a-b$. If we increase $a$ to $a+\delta a$ while keeping $b$ fixed, then $f$ changes to

$$
f+\delta f=a+\delta a-b \Rightarrow \delta f=\delta a \Rightarrow \delta f_{a}=\delta a_{\max }=+U[a]
$$

after subtracting $f=a-b$ from both sides. Similarly, you can easily see that $\delta f_{b}=-U[b]$ (negative because when $b$ goes up, $f$ goes down). Therefore the total uncertainty in $f$ in this case is

$$
\begin{equation*}
U[f]=\sqrt{(U[a])^{2}+(U[b])^{2}} \quad \text { when } f=a-b \tag{7.3}
\end{equation*}
$$

Therefore, if $a$ and $b$ have the same uncertainty, then the best estimate of the uncertainty in $f$ is not $2 U[\mathrm{a}]$ (as one might naively expect) but rather $\sqrt{2} U[a] \approx 1.4 U[a]$. On the other hand, if $U[a]$ is more than about 3 times larger than $U[b]$, then $(U[a])^{2}$ is more than 9 times larger than $U[b]$, and thus will dominate the expression for $U[f]$ in equation 7.2.

### 7.4 THE WEAKEST-LINK RULE

Most calculated quantities $f$ that arise in physics experiments can be put in the form

$$
\begin{equation*}
f(a, b, c, \ldots)=k a^{m} b^{n} c^{j} \tag{7.4}
\end{equation*}
$$

where $k$ is a constant and $m, n$, and $j$ are exponents that may be positive or negative, and are usually integers or simple fractions. A dependence of this form on the variables $a, b, c, \ldots$ is called a power-law dependence. For example, an object's calculated speed $v$ depends on the distance $D$ it had to travel and the time $T$ that it took to travel that distance according to the power-law relation $v=D / T=D^{1} T^{-1}$. In this case, the constant $k=1$.

If equation 7.4 is true, then the weakest-link rule provides a fast and simple way of estimating the uncertainty $U[f]$ in the calculated quantity $f$ : The fractional uncertainty $Q[f]$ of $f(a, b, c, \ldots)=k a^{m} b^{n} c^{j}$ is approximately equal to the largest of the values $|m| Q[a],|n| Q[b]$, $|j| Q[c]$, and so on. The fractional uncertainties $Q[a], Q[b], Q[c], \ldots$ of the variables are typically quite different in a real experiment, and so doing a few rough divisions in your head can quickly guide you to the variable whose fractional uncertainty is largest.

We will look at why this rule is correct in a moment. First note that this rule says two interesting things. The first is that the "weakness" (that is, the fractional uncertainty) of a calculated quantity $f$ is determined primarily by the "weakest" of the quantities on which it depends, the "weakest" here being the quantity whose fractional uncertainty times its exponent is largest. The rule's name emphasizes this by bringing to mind the old saying "the strength of a chain is determined by its weakest link." (Note that contrary to the currently popular game show, the "weakest link" is the one we keep in our calculation!)

The second interesting thing that the rule says is that it is the fractional uncertainty in $f$ that is related in a simple way to the fractional uncertainties of its variables. This was not the case when we are talking about a simple sum or difference of variables, but as we will shortly see, it is the most natural way to deal with power-law relations.

Let's see how this rule might work in a given situation. Imagine that we are computing the magnitude of an object's average velocity $v_{\text {avg }}=D^{1} T^{-1}$, where $D$ is the distance it travels during a time $T$. Say that we have measured $D=(12.12 \pm 0.02) \mathrm{m}$ and $T=(0.82 \pm 0.05) \mathrm{s}$. The best guess value of $v_{\text {avg }}=(12.12 \mathrm{~m}) /(0.82 \mathrm{~s})=14.8 \mathrm{~m} / \mathrm{s}$. The fractional uncertainties in $D$ and $T$ are:

$$
Q[D]=\frac{U[D]}{D}=\frac{0.02 \mathrm{~m}}{12.12 \mathrm{~m}}=0.0017, Q[T]=\frac{0.05 \mathrm{~s}}{0.82 \mathrm{~s}}=0.061
$$

The fractional uncertainty in $T$ is more than 35 times larger than that for $D$ so it dominates.
According to the weakest link rule, the fractional uncertainty in $v_{\text {avg }}=D^{1} T^{-1}$ is thus given by

$$
Q\left[v_{\text {avg }}\right] \approx|-1| Q[T]=0.061 \Rightarrow U\left[v_{\text {avg }}\right]=0.061 v_{\text {avg }}=(0.061)(14.8 \mathrm{~m} / \mathrm{s})=0.9 \mathrm{~m} / \mathrm{s}
$$

Note that the calculations here are quick and simple: that is the beauty of the weakest-link rule.
The general "proof" of the weakest-link rule is somewhat beyond our mathematical means here, but let's see how we might "prove" it in the simple case where $f=f(a, b)=k a^{2} b$. If $b$ changes to $b+\delta b$ while $a$ remains the same, then $f$ changes to

$$
f+\delta f_{b}=k a^{2}(b+\delta b)=k a^{2} b+k a^{2} \delta b=f+k a^{2} \delta b \Rightarrow \delta f_{b}=k a^{2} \delta b
$$

If we now divide both sides of this by $f=k a^{2} b$ and set $\delta b=U[b]$, we find that

$$
\begin{equation*}
\frac{\delta f_{b}}{f}=\frac{k a^{2} \delta b}{k a^{2} b}=\frac{\delta b}{b}=\frac{U[b]}{b}=Q[b] \tag{7.5}
\end{equation*}
$$

If we change $a$ to $a+\delta a$ while $b$ remains the same, then $f$ changes to $f+\delta f_{a}=k(a+\delta a)^{2} b$. Writing out the square and subtracting $f=k a^{2} b$ from both sides, we get

$$
\begin{aligned}
& f+\delta f_{a}=k\left(a^{2}+2 a \delta a+(\delta a)^{2}\right) b=f+2 k a b \delta a+k b(\delta a)^{2} \\
& \Rightarrow \delta f_{a}=2 k a b \delta a+k b(\delta a)^{2}
\end{aligned}
$$

Dividing both sides of the result by $f=k a^{2} b$ yields:

$$
\begin{equation*}
\frac{\delta f_{a}}{f}=\frac{2 k a b \delta a}{k a^{2} b}+\frac{k b(\delta a)^{2}}{k a^{2} b}=2 \frac{\delta a}{a}+\frac{(\delta a)^{2}}{a^{2}} \tag{7.6}
\end{equation*}
$$

Now, if we can assume that the variation $\delta a$ due to $a$ 's uncertainty is much smaller than the value of $a$ itself, then $(\delta a / a)^{2} \ll \delta a / a$, and we can ignore the second term in comparison to the first. Then, if we set $\delta a=U[a]$, we find that

$$
\begin{equation*}
\frac{\delta f_{a}}{a} \approx 2 \frac{U[a]}{a}=2 Q[a] \tag{7.7}
\end{equation*}
$$

If we now divide both sides of equation 7.2 by $f$ and substitute in the results of equations 7.5 and 7.7, we find that

$$
Q[f]=\frac{U[f]}{f}=\frac{1}{f} \sqrt{\left(\frac{\delta f_{a}}{f}\right)^{2}+\left(\frac{\delta f_{b}}{f}\right)^{2}}=\sqrt{(2 Q[a])^{2}+(Q[b])^{2}}
$$

If one of $2 Q[a]$ or $Q[b]$ is larger than the other by a factor of 3 or more, that term will dominate inside the square root and thus be essentially equal to $Q[f]$. Thus we have seen that the weakest link rule does indeed adequately summarize the more exact calculation in this case as long as (1) the fractional uncertainty in $a$ is fairly small, so that we can ignore the complicating term in equation 7.5, and (2) one of $2 Q[a]$ or $Q[b]$ is larger than the other by a factor of 3 or more.

### 7.5 WHAT IF THE WEAKEST-LINK RULE DOESN'T APPLY?

The weakest-link rule does not apply to situations where $f$ 's dependence on its variables is not a power-law relation (for example, the simple sum $f(a, b)=a+b$ ). The weakest-link rule is also not very accurate in situations where the fractional uncertainties in the variables are large fractions of 1 , or when two fractional uncertainties are nearly the same. What do we do in such situations?

The first level of approximation is to use the weakest link rule anyway, and simply recognize (and state in your lab notebook) that the estimate of the uncertainty might well be inaccurate. The weakest-link rule will almost always yield estimates good to within a factor of two or so unless your formula for $f$ involves logarithms or exponentials. In situations where one is not interested in high degree of precision this may be acceptable, as long as you recognize situations when the rule might not be expected to give accurate results and factor that into your conclusions.

A better way to determine the uncertainty of $f$ would be to calculate many values of $f$ using values of its variables $a, b, c, \ldots$ that are randomly chosen from the raw data for these variables. Then one can determine the uncertainty of $f$ in the usual way by evaluating the standard deviation of the set of values for $f$ and so on. This method almost always gives an excellent estimate of $U[f]$ as long as the number of values of $f$ that you generate is reasonably large (more than 20 at least!). However, because this method is so tedious, we cannot recommend it unless you have a computer program to do the work.

An approach of last resort is to apply the general method outlined in section 7.2. Calculate (by hand) the variation in $f$ when you vary each variable from its central position to the upper edge of its uncertainty range while leaving the other variables constant. Then use equation
7.2 to compute the total uncertainty in $f$ from these individual variations. This will generally be pretty tedious compared to the weakest link method, but does yield reasonably accurate answers in all cases. This is the method that you must use if $f$ involves a logarithm or exponential, unless you have a computer program that can do the calculation outlined in the previous paragraph. See section 7.6 below for a description of just such a computer program.

Of course, if $f$ involves the simple sum or difference of two variables, one can apply equation 7.3, which we derived especially for the simple difference case. (You should be able to convince yourself that equation 7.3 also applies to the case of a simple sum.)

### 7.6 THE PropUnc PROGRAM

PropUnc is a computer program that uses the "calculate many values" approach to generate an accurate value of uncertainty of $f$ in all cases involving five or fewer variables. A screen shot of the program set up to calculate the uncertainty of the function $f=k a^{2} b$ is shown in Figure 7.1. All that you have to do to use the program is to type symbols, values, and uncertainties for your basic variables in the "variables" section and the symbolic expression for $f$ in the "expression" section and punch the "Evaluate" button. The program then calculates a randomly-chosen value for each variable that lies within the uncertainty range you specified for that variable and calculates the value of $f$ using randomly-perturbed variable values using the formula you supply. It is therefore much like LinReg, which generates 19 more data sets with measured values consistent with your measured values and their uncertainties. The computer repeats this process $N$ times, where the default value is $N=100$, but you may vary it if you wish. Finally, the computer calculates the standard deviation of the $N$ values of $f$ it has generated and the uncertainty in $f$ from that.

In other words, the computer simulates having $N$ teams of experimenters like your team who have measured the same variables and have used them to calculate values of $f$. The uncertainty in the value of $f$ is clearly related to the spread in the values obtained by the $N$ fictitious teams.

In the case shown in the figure, the fractional uncertainty in $f$ is $10 \%$. Note that the quantity $a$ has by far the largest fractional uncertainty, $5 \%$ compared to $1 \%$ for the other variables, so the weakest link rule would say that $Q[f] \approx 2 Q[a]=2 \cdot 5 \%=10 \%$. Thus the program agrees with the weakest-link rule in this case. If you press the "Evaluate" button again, however, you may get slightly different results, because of the random nature of the simulation. Choosing larger values of $N$ will make the calculation more accurate, but could be slow on an old computer.

We actually would rather you use the weakest-link rule whenever you can; you will not always have PropUnc handy in real life, so it is good to practice using the weakest-link rule, which is simple and usually gives good results. You may use PropUnc (1) to check a weakestlink calculation, or (2) whenever the weakest-link rule or equation 7.4 does not apply. PropUnc is installed on all the lab computers and also may be freely downloaded from the Physics 51 web site.


Figure 7.1. The PropUnc screen.

### 7.6 SOME EXAMPLES

Example 7.6.1: Suppose that you want to find the uncertainty in the volume of a cylinder when you have measured its diameter and height. The volume $V$ of a cylinder in terms of its diameter $d$ and height $h$ is given by $V=\frac{1}{4} \pi d^{2} h$. Here the volume has power-law dependences on the variables $d$ and $h$, so we should be able to apply the weakest-link rule. Suppose that our measurements are $d=(0.200 \pm 0.002) \mathrm{m}$ and $h=(0.600 \pm 0.003) \mathrm{m}$. The fractional uncertainties in $d$ and $h$ are:

$$
\begin{equation*}
Q[d]=\frac{0.002 \mathrm{~m}}{0.200 \mathrm{~m}}=0.01, Q[h]=\frac{0.003 \mathrm{~m}}{0.600 \mathrm{~m}}=0.005 \tag{7.8a}
\end{equation*}
$$

Note that even though the absolute uncertainty of $d$ is smaller than that for $h$ ( 0.002 m compared to 0.003 m ), the fractional uncertainty of $d$ is larger. Moreover, since $V \propto d^{2}$, the weakest link rule tells us that we should be comparing $2 Q[d]$ to $Q[h]$ : we see that in this case the first is four times larger than the second. Therefore, according to the weakest-link rule,

$$
\begin{equation*}
Q[V\} \approx 2 Q[d]=0.02 \tag{7.8b}
\end{equation*}
$$

The $1 \%$ uncertainty in $d$ thus leads to a $2 \%$ uncertainty in $V$. Now that we have the fractional uncertainty in $V$ we can find the absolute uncertainty pretty easily. The central volume value that we calculate from our best-guess estimates of $d$ and $h$ is

$$
\begin{equation*}
V=\frac{1}{4} \pi d^{2} h=\frac{\pi}{4}(0.200 \mathrm{~m})^{2}(0.600 \mathrm{~m})=0.0188 \mathrm{~m}^{3} \tag{7.9}
\end{equation*}
$$

This value is uncertain to $2 \%$, so its absolute uncertainty must be

$$
U[V]=V \cdot Q[V]=\left(0.0188 \mathrm{~m}^{3}\right)(0.02)=0.000377 \mathrm{~m}^{3} \approx 0.0004 \mathrm{~m}^{3}
$$

where I have rounded the uncertainty to one significant digit. An uncertainty this size means that it is pointless to include more digits than we already have in equation 7.9. So a statement of this value and its uncertainty would be $V=(0.0188 \pm 0.0004) \mathrm{m}^{3}$ or $(1.88 \pm 0.04) \times 10^{-2} \mathrm{~m}^{3}$. Note that in both cases we have written the two values so that they are multiplied by the same power of 10 . This makes the values much easier to compare.

Example 7.6.2: Imagine that the number of bacteria in a certain colony at a certain time is $N=$ $305,000 \pm 15,000$. What is the uncertainty in $f=\ln N$ ? (You might need to know the uncertainty of the logarithm if you want to draw an uncertainty bar for this data point on a loglog graph.)

Since $f=\ln N$ is not a power-law relation, we cannot use the weakest-link rule. If we can't use PropUnc, we can fall back on the general method. In this case, if we change $N$ from its central value of 305,000 to the upper limit of its uncertainty range which is 320,000, the value of $\ln N$ changes from $\ln (305,000)=12.6281$ to $\ln (320,000)=12.6761$, so the change in $f$ due to this change is $\delta f_{N}=+0.480$. Since $f$ only depends on $N$ in this case, equation 7.1 implies that

$$
\begin{equation*}
U[f]=\sqrt{\left(\delta f_{N}\right)^{2}}=\left|\delta f_{N}\right|=0.048 \approx 0.05 \tag{7.9}
\end{equation*}
$$

where we again have rounded to one significant digit.
The result from PropUnc is shown in Figure 7.2. Note that in "computerese" $\ln N$ becomes " $\log (\mathrm{n})$ ". We use a small $n$ to distinguish it from the number $N$ of trials the computer evaluates.


Figure 7.2: PropUnc's check of equation 7.9.
If we were to naively apply the weakest-link rule anyway we would estimate that since the fractional uncertainty in $N$ is $15,000 / 305,000 \approx 0.05$, the fractional uncertainty in $f=\ln N$ would also be $5 \%$. This would lead us to estimate the uncertainty of $f$ to be $0.05(12.63) \approx 0.63$, which is more than 10 times larger than the more correct calculation given by equation 7.9. This illustrates our earlier statement that the weakest-link rule does poorly when $f$ involves logarithms.

### 7.7 THE BOTTOM LINE

You will be expected to state uncertainties of all calculated quantities in this lab program. Use the weakest-link rule to estimate these uncertainties whenever that rule applies; when it doesn't, either use one of the methods discussed in section 7.5 or use PropUnc to calculate the uncertainty.

## EXERCISES

Exercise 7.1
A person is measured to run a distance of $100.00 \mathrm{~m} \pm 0.05 \mathrm{~m}$ in a time of $11.52 \mathrm{~s} \pm 0.08 \mathrm{~s}$. What is the person's speed and the uncertainty of this speed according to the weakest link rule?

## Exercise 7.2

A spherical balloon has a radius of $0.85 \mathrm{~m} \pm 0.01 \mathrm{~m}$. How many cubic meters of gas does it contain, and what is the uncertainty in your result?

## Exercise 7.3

Imagine that you want to estimate the amount of gas burned by personal cars every year in the U.S. You estimate that there are an average of about $0.7 \pm 0.4$ cars per person in the U.S., that there are 275 million $\pm 30$ million people in the U.S. currently, that a car is driven on the average about $15,000 \mathrm{mi} \pm 3,000 \mathrm{mi}$ a year, and that the average number of miles per gallon that a car gets is about $23 \mathrm{mi} / \mathrm{gal} \pm 5 \mathrm{mi} / \mathrm{gal}$. What is the approximate amount of gas burned and what is the approximate uncertainty of this estimate?

## Exercise 7.4

Equation 7.10 suggests that rather than dropping the other uncertainties entirely (as the weakest link rule suggests) perhaps we would get a more accurate estimate of the fractional uncertainty in a power-law relation by multiplying the fractional uncertainty of each variable by its power, squaring the result, adding the squares and taking the square root of the sum. Do this for the case described in Exercise 7.3 above. Is the answer you get from doing this careful way much different from just using the weakest link result? Suppose that you do some research that enables you to reduce the fractional uncertainty in the all quantities but the worst one to $1 \%$. Does reduce the uncertainty much? If you really want to improve the uncertainty, what would be the variable to focus on, and why?

