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Chapter 2: PRESENTING DATA GRAPHICALLY 
“ ‘A crowd in a little room -- Miss Woodhouse, you have the art of giving 

pictures in a few words.’” 
 -- Emma 
 

2.1 INTRODUCTION 

 “Draw a picture!” is an important general principle in explaining things. Frank 
Churchill’s remark to Emma Woodhouse notwithstanding, “the art of giving pictures in a few 
words” is not nearly as useful as a good diagram or graph, because most people process visual 
information much more quickly than information in other forms. Graphing your data shows 
relationships much more clearly and quickly, both to you and your reader, than presenting the 
same information in a table. 
 
 Typically you use two levels of graphing in the lab. A graph that appears in your final 
report is a higher-level graph. Such a graph should be done very neatly, following all the 
presentation guidelines listed at the end of this chapter. It's made primarily for the benefit of the 
person reading your report.  
 
 A lower-level graph is a rough graph you make for your own benefit; they're the ones 
the lab assistants will hound you to construct. These lower-level graphs tell you when you need 
to take more data or check a data point, since any strange measurements really stand out in a 
graph. They're most useful when you make them in time to act in response to what you see. This 
means that you should graph your data roughly before you leave the lab so you still have the 
chance to make more measurements. (That's one reason we recommend that you leave every 
other sheet in your lab notebook free, so you can use that blank sheet to graph your data.) In 
graphing your data in the lab, you don't need to be too fussy about taking up the whole page or 
making the divisions nice, but you should label the axes and title the graph to remind yourself 
later what it shows. 
 
 Graphing your data right after you have completed a set of measurements also flags 
regions in your data range where you should take more data. Typically people take 
approximately evenly spaced data points over the entire range of the controllable variable (the 
“independent” variable), which is certainly a good way to start. A graph of that “survey” data 
will tell you if there are regions where you should look more closely: regions where your graph 
is changing rapidly, going through a minimum or maximum, or changing curvature, for example. 
The graph helps you identify interesting sections where you should get more data, and saves you 
from taking lots of data in regions where little is happening. 
 
 Graphing each point as you take it, though, is not a good idea. Doing so is inefficient and, 
worse, can prejudice you about the value of the next data point. So take five or six data points 
and then graph them all. 
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 For example, Figure 2.1 below shows the original data taken on a phenomenon called 
mechanical resonance. All you need to know about resonance for our purposes right now is that 
the “amplitude” (a measure of the response of an oscillating system) depends on the frequency at 
which that system is perturbed (or “driven”) by an external oscillating force. 
 
 Notice that the experimenter initially chose driving frequencies in the first run that were 
approximately evenly spaced across the range shown in the graph. For this particular apparatus, 
the highest and lowest frequencies attainable with the equipment are easy to find, and the 
experimenter chose to space the frequencies evenly to get roughly 10 different frequencies over 
the range in frequencies. You can see from the graph of the original data that the response doesn't 
change very much at either very high or very low frequencies, but near some intermediate 
frequency, between 4 and 6 cycles/s, something strange and interesting happens. 

Mechanical resonance
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Figure 2.1: First set of data (filled circles) for amplitude response versus driving frequency in an 

oscillating system. Notice that the data points are evenly spaced. 
 
 The experimenter noticed this, too, and went back to take more data in the interesting 
range of frequencies. The frequency spacing used in the second round is smaller than used in the 
first set by about a factor of ten, yielding 15 more measurements in the critical region. The result 
of adding the second set of measurements is shown in Figure 2.2. As you can see, the shape of 
the graph is now much better defined. Furthermore, the new data show that the anomalously high 
amplitude at 4.5 cycles/s is not a mistake (as one might think considering the other values). The 
experimenter could, of course, have taken data with the closer spacing over the entire frequency 
range, but that would waste time on measurements at both low and high frequencies where 
nothing much is happening. The strategy of taking coarsely spaced data and then backing up to 
take more data in interesting regions is a good compromise between completeness and 
efficiency. But remember that you usually can’t identify the “interesting” regions if you don't 
graph your data to begin with!  
 



2. Presenting Data Graphically         15 
  
 

Mechanical resonance, more data

0

5
10

15

20
25

30

35
40

45

0 2 4 6 8 10

Frequency (Hz)

A
m

pl
itu

de
 (c

m
)

Figure 2.2: Amplitude vs. driving frequency in a resonant system, after adding more data points 
(triangles) between 4.0 and 6.0 cycles per second. 

 

2.2 ANALYZING YOUR GRAPH 

 Graphical data analysis is typically used as a euphemism for “find the slope and 
intercept of a line.” You will find this semester that you spend a lot of effort manipulating your 
data so that the resulting graph is a straight line. As you will find throughout the semester, the 
slope and/or intercept of such a line often gives useful information about the physical system 
under investigation.  
 
 Determining the slope and intercept of a linear graph is such a common and important 
task that we have developed a computer program (described in Chapter 8 in this manual) to help 
you do it accurately. Many scientific calculators can also do this, although they almost never 
give the uncertainty in the slope and intercept.  It is good to be able to estimate roughly the slope 
and intercept of a lower-level graph by hand, so that you can see if your measurements are at 
least roughly correct before you enter them all into the computer. Manual estimates of the slope 
and intercept also give you a check on the computer's results, allowing you to catch simple errors 
like entering the data in the wrong columns, for example. This process is so important that, 
although we have this fond hope that you learned how to do it in high school, we're going to 
review it anyway. 
 
 Imagine that you have constructed a lower-level graph of your data by hand, and it looks 
pretty linear. Start by drawing in by eye the line that you think best matches your data. The 
analytic procedure called linear regression (described in Chapter 8) gives the optimum result, 
but in fact an eyeballed “best fit” line will generally be quite close to the line found by linear 
regression. Your job now is to find the slope and the intercept of that line you've drawn. 
 
 The slope of a line is defined as the “rise over run,” the change in the vertical coordinate 
value divided by the change in the horizontal coordinate value. To determine the slope, you must 



2. Presenting Data Graphically         16 
  
 
first choose two points on your line. They need not be actual data points but they must lie exactly 
on your line. They should be about as far apart on the graph as possible to minimize the effects 
of the inevitable experimental uncertainty in their position. Mark each of those points with a 
medium-large dot or × and/or draw a circle around it. Read the coordinates ( ), yx 11  and ( ), yx 22  
of each point off the graph. (As is the convention, the symbol x here represents the independent 
variable, plotted along the horizontal axis, and y is the dependent variable, plotted along the 
vertical axis.) 
 
 With these two coordinate pairs, you can calculate the slope m using the equation 
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substituting your values for ( ) and ( . You can call either point 11 , yx ( ), as long as 
you assign the corresponding y-value to each x-value. Now that you have m, you can find the y-
intercept from 

11 , yx

1yb =

)11 , yx

  y-intercept =      (2.2) 1mx−
 
Again, you can call either point (  as long as they both lie on the line. Since the y-intercept 
is defined as the value of y where a line intersects the y-axis (defined to be the x = 0 line), you 
can also read the intercept directly off the graph as long as the graph shows the x = 0 line. 
 
 The graph in the sample lab notebook in section 1.5 illustrates the analysis of a lower-
level graph. Note the use of x’s to mark the points used to compute the slope. 
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Figure 2.3. A graph of pendulum period T versus initial angle θ, showing how uncertainty bars 

indicate the uncertainty ranges associated with the displayed measurement value. 
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2.3 UNCERTAINTY BARS 

 Individual data points plotted on any graph should include uncertainty bars, sometimes 
called error bars, showing the uncertainty range associated with each data point. You should 
show both vertical and horizontal uncertainty bars, if the uncertainties are large enough to be 
visible on the graph. If they aren't large enough, you should mention this in your report so we 
don't think you've forgotten them. You draw uncertainty bars by indicating the “best guess” 
value (typically either a single measured value or mean of a set of measurements) with a dot, and 
then drawing an “I-bar” through the dot, whose length spans the 95% confidence range of that 
value. An example of such an uncertainty bar is shown in Figure 2.3 above. The single data point 
plotted corresponds to a measured pendulum period T of 1.93 s ± 0.03 s for an initial release 
angle θ of 20° + 2°. (The horizontal and vertical lines pointing to the error bars are not part of the 
graph, but are included to show you how the point and the uncertainty bars are related to the 
axes. Notice also that the T-axis does not begin at T = 0.) 
 

2.4 PRESENTATION GUIDELINES for "higher level" graphs 

 You will create "higher-level" graphs for any written work that you submit for a full lab 
report. These graphs should be more carefully and formally drawn and labeled than the lower-
level graphs that appear in your lab notebook. Here are some guidelines for constructing these 
graphs: 
 

1. Draw your graphs in pencil; mistakes are easy to make. If you wish, go back later and 
touch them up in ink. High-quality graph paper may be purchased from Connie Wilson, the 
physics department secretary for 10¢ a sheet. Computer-drawn graphs are fine as long as 
they comply with the remaining guidelines. The program described in Chapter 8 of this 
manual makes it very easy to produce graphs that automatically comply with all these 
guidelines, but the graphs produced by other programs (such as Excel or Cricket Graph) 
may require extensive modification to fit the remaining guidelines. 

2. Scale your axes to create as large a graph as possible consistent with the constraint that the 
divisions on the axes correspond to some nice interval like 1, 2, or 5 (times some power of 
10). If you must make the graph smaller than full size to get nice intervals, OK, but check 
that you've picked the interval that gives you the largest possible graph (which will display 
your data in as much detail as possible). When using log-log or semi-log paper, choose 
paper with the number of cycles that gives the largest possible graph (see Chapters 10 and 
11). 

3. The lower left-hand corner need not be the point (0,0). Choose the range of values for each 
axis to be just wide enough to display all the data. If (0,0) does not appear on a hand-drawn 
graph, it is customary to mark the break in the axis or axes with two wavy lines (≈). 

4. Mark the scale of each axis along each axis for the entire length of the axis. 
5. Label both axes, identifying the quantity being plotted on each axis and the units being 

used. 
6. Give each graph a title that summarizes the information contained in the axes and provides 

any additional information needed to distinguish this graph from other graphs in the report. 
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7. Give each graph a number (e.g., "Figure 2"), which you use in the body of the report or 
summary to refer quickly to the graph. (You can write such a number on a computer 
graph.) 

8. Draw points and uncertainty bars as discussed in section 2.3.  
9. If you calculate the slope and intercept of the graph from two points (rather than using the 

method of linear regression described in chapter 10), indicate the two points you used on 
the graph. Draw the line through the two points, label it "Best-fit line" (or something 
similar), and give its slope and intercept on the graph in some large clear space. 

 

2.5  CHECKLIST FOR EACH GRAPH IN A WRITTEN REPORT 

 Use this checklist to make sure that any higher-level graph that you include in a 
submitted written report (as opposed to your lab notebook) has the correct features and format. 
 

   The axes are scaled correctly with divisions equal to "nice" intervals. 
   The graph is drawn as large as possible so that it fills the page. 
   The scales on the axes have tick marks that run for their entire length. 
   The axes have labels describing the variables they represent (including units). 
   The measured data points are clearly plotted, including uncertainty bars. 
   The graph has an appropriate title and figure number. 
   The points used to calculate the slope and intercept are clearly marked 
    (if that method is used). 

 

EXERCISES 

Exercise 2.1 
Using the blank graph paper on the next page, create a higher-level graph of the data provided in 
Table 2.1. Use the checklist in section 2.5 to make sure that you have included everything. 
 
 
Distance fallen Kinetic energy 
  
0.200 ± 0.003 2.00 ± 0.10 
0.400 ± 0.003 3.78 ± 0.15 
0.600 ± 0.003 5.65 ± 0.20 
0.800 ± 0.003 8.01 ± 0.25 
1.000 ± 0.003 9.82 ± 0.30 
 
Table 2.1: Kinetic energy per unit mass of a 
falling object as a function of distance fallen. 
 
Exercise 2.2 
Draw what you think is the best possible line through the data points in the graph you just 
created in the last problem, and find the slope and intercept of this line. 



2. Presenting Data Graphically         19 
  
 

  


