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Chapter 10: POWER-LAW FITTING AND LOG-LOG 
GRAPHS 

 
“She had taken up the idea, she supposed, and made everything bend to it.” 
 --- Emma 

 

10. DEALING WITH POWER LAWS 

 Although many relationships in nature are linear, some of the most interesting 
elationships are not. Power-law dependences, of the form  

  nkxxy =)(      (10.1) 

y common. In many cases, we might suspect that two experimental variables are 
 

we don’t know n, it would seem at first glance that 
the best we could do would be simply try different possible values of n to see what works. This 
could get old fast. 
 
 We can, however, take advantage of the properties of logarithms to convert any 
relationship of the type given by equation 10.1 into a linear relationship, even if we do not know 
either k or n!  The most basic property of logarithms (for any base, but let’s assume base-ten 
logs) is that 
 
  baab loglog)log(

1 

r
 
 
 
are particularl
related by a power-law relationship, but are unsure of what k or n are. For example, we might
suspect that the period T of a simple harmonic oscillator might depend on the mass m of the 
oscillating object in some kind of power-law relationship, but we might be unsure of exactly 
what the values of either n or k. If we knew n, then we could plot y vs. xn to get a straight line; 
the slope of that line would then be k. But if 

+=     10.2a) 
 
From this it follows that  
 
    n times      n times 
  ( ) anaaaaaaan loglogloglog)log(log =+++=⋅⋅⋅= KK  (10.2b) 
 
(This is actually true so, in the case of base-ten logarithms, this 
means that 
 
 

 even for non-integer n.)  Al

( ) bbbb =⋅== 110log10log      (10.2c) 
 
which shows that ra
 

ising 10 to a power is the inverse operation to taking the (base-ten) log. 
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 With this in mind, let us take the (base-ten) logarithm of both sides of equation 1
use the properties described by equation 10.2. If we do this we get 
 

0.1 and 

  ( ) ( ) xnkxkkxy nn logloglogloglog +=+==   (10.3) 
 
Now d et 

 nuv +=     (10.4) 

ow, t log y vs. 

e slope of  We can 
of n by c

log

efine ux ≡log and vy ≡log .  Substituting these into 10.3 and rearranging, we g
 

klog    
 
N his is the equation of a straight line. This means that if we graph v vs. u (that is, 
log x), we should end up with a straight line, even if we do not know what n and k are. 
 
  Furthermore,th this line is the unknown exponent n in equation 10.1.
therefore find the value alculating the slope in the usual way.  That is, 
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The value of the intercept (which is the value of yv log=  when 0log == xu ) is klog , so if w
can find the intercept and its uncertainty, we can find k and its uncertainty. 
 
 In summary

e 

 the form given in equation 10.1, take the 
garithm of both sides, and convert it to a linear relationshi e and inter
lated ing 

0.2 AN EXAMPLE OF A LOG-LOG GRAPH 

As an example, consider a hypothetical experiment testing how the period of an object 
spring depends on the object’s mass. Table 10.1 gives a set of 

this experiment, Figure 10.1 shows a graph of period vs. the mass. 
he me ata, while Figure 10.2 shows a graph of 

Period (sec)  log(Mass) log(Period) 

, we can take any relationship of
lo p whose slop cept are 
re  to the unknown values of n and k. This is, therefore, a very powerful way of learn
about unknown power-law relationships (and displaying them). A graph that plots ylog  versus 

xlog  in order to linearize a power-law relationship is called a log-log graph. 

1

 
oscillating at the end of a 

easurements taken during m
Table 10.2 shows the base-10 logs of t asurement d

 log T vs. log M.
 
  Table 10.1      Table 10.2 
 
Mass (kg) 
0.125 2.42  -0.903 0.384 
0.325 3.76  -0.488 0.575 
0.525 4.75  -0.280 0.677 
0.725 5.52  -0.140 0.742 
0.825 5.87  -0.084 0.769 
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re 10.1: Graph of the period of oscillation 
s a function of mass. 

Figure 10 Graph log of the period as 
a function of the log of the mass. 
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Figu .2:  of the 
a
 
 We can see that the graph of the period vs. the mass does not yield a

ne; if the uncertainties are smaller than the dots representing the data points, w
 very good straight 

e would have to 
ay tha  

a
the gr ares in Figure 

li
s t a straight line is inconsistent with the data. On the other hand the plot of log T vs. log M
is a very nice straight line, suggesting that the period T and the mass M have a power-law 
relationship. 
 
 What are n and k according to this experiment? We can easily get a quick estim te from 

aph. For the sake of round numbers, consider the points marked with squ
10.2. The slope of this graph (rise over run) is thus 
 

  48.0
20.080.0
43.072.0
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MM
TTn    (10.6) 

 
The two points that you choose to compute the slope need not correspond to actual data points: 
simply choose convenient points on your drawn line near the ends of the line. I chose the points 
o that the denominator of the expression above would be simple. Since exponents in physical 

lue of n is 
.  (This turns out apter N12 in the class 

t
 
 e intercept is t e where the line c s g M = 0 grid li ording to the 
g is is roughly wh g T = 0.82 (note th t t  = 0 line is the ge of the 
g re, not the left!) e intercept is 0.82  l ich means that  
 

 k = 100.82 = 6.6 s/kg1/2. 

s
situations are most often integers or simple fractions, we might guess that the actual va
½ to be the theoretical value as well, as we will see ch
ext.) 

Th he plac ro ses the lo ne. Acc
raph, th ere lo a he log M right ed
raph he . So th  = og k, wh
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10.3  A COMMENT ABOUT LOGARITHMS AND UNITS 

 ng in and out of these calculations 
ra l rule about special functions: the log 
fun supposed to have a dimensionless 
ar s supposed to be a pure number, with 
no ed to it. What's going on?   
 
 uct of the number part and the units part; 
th it of centimeters. When you take the 
log logarithm of this product, which 
beh sum of the logarithms of the two 

 is therefore log (10) + log (cm) = 
hich may seem rather disturbing. 

 
 se you typically find the logarithm of a 

uantity with units only in the process of finding the difference between two logarithms of 
m

e attach to each logarithm of log s 
here s is the unit of seconds here), we see that two log s terms cancel out when we subtract, 

g

 knn log)kglog(loglog(sec)log

You may also have noticed that units seem to spri
ther haphazardly. This behavior conflicts with a genera

ction, like sine, cosine, and the exponential function, is 
gument.  That is, the number you take the logarithm of i
 units or dimensions (like seconds or centimeters), attach

One can think of a number with units as the prod
at is, 10 cm is 10 (a pure number) multiplied by the un

arithm of a number with units, then, you are taking the 
aves like the logarithm of all products: the result is the 

numbers making up the product. The logarithm of 10 cm
1 + log (cm). You can't give a numerical result for log cm, w

Fortunately, this all works out fine anyway, becau
qq
quantities with the same units. Consider, for exa
using equation 10.6. If w
quantities with the same units. Consider, for exa
using equation 10.6. If w

ple, the situation where we compute the slope 
 in the numerator the appropriate term 
ple, the situation where we compute the slope 
 in the numerator the appropriate term 

(w(w
leavin  a unitless number in the numerator. The same thing happens in the denominator. 
Therefore, the slope ends up being a unitless number, as it should be. 
 
 To find the units of k, note that equation 10.4 in this situation really ought to read 
 

leavin  a unitless number in the numerator. The same thing happens in the denominator. 
Therefore, the slope ends up being a unitless number, as it should be. 
 
 To find the units of k, note that equation 10.4 in this situation really ought to read 
 
    +
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10.3  A COMMENT ABOUT LOGARITHMS AND UNITS 

 You may also have noticed that units seem to spring in and out of these calculations 
rather haphazardly. This behavior conflicts with a general rule about special functions: the log 
function, like sine, cosine, and the exponential function, is supposed to have a dimensionless 
argument.  That is, the number you take the logarithm of is supposed to be a pure number, with 
no units or dimensions (like seconds or centimeters), attached to it. What's going on?   
 
 One can think of a number with units as the product of the number part and the units part; 
that is, 10 cm is 10 (a pure number) multiplied by the unit of centimeters. When you take the 
logarithm of a number with units, then, you are taking the logarithm of this product, which 
behaves like the logarithm of all products: the result is the sum of the logarithms of the two 
numbers making up the product. The logarithm of 10 cm is therefore log (10) + log (cm) = 
1 + log (cm). You can't give a numerical result for log cm, which may seem rather disturbing. 
 
 Fortunately, this all works out fine anyway, because you typically find the logarithm of a 

uantity with units only in the process of finding the difference between two logarithms of 
m

e attach to each logarithm of log s 
here s is the unit of seconds here), we see that two log s terms cancel out when we subtract, 

g

 knn log)kglog(loglog(sec)logτ +=+ μ + ,   (10.7) 

e crosses the vertical grid line corresponding 
 log μ = 0: we see from the graph that logτ has the value log τ0 = 0.82 there. Therefore 

plie

kg)log(log(sec)logloglog)kglog(0log(sec)log 00 nkknn

 
where in this expression we are considering τ and µ to be the unitless parts of T and M 
respectively. The intercept is the point where the lin
to
equation 10.7 im
 

s that 

  (10.8) τ τ⇒++⋅=+ = + −
 
When we take the antilog of (that is, 10 to the power of) both sides of this, all the items in logs 
get multiplied together, so we get (assuming that n is really 1/2): 
 

 1/21/2

82.0log sec6.6sec10sec10 0

=
⋅

=
⋅

=
τ

k    (10.9) n kgkgkg

tities, and fill in the 
og (as we did with k in the last section) to make them 

 
 Keeping track of these unit terms when working with logarithms involves a lot of work, 
however, and less often pays off the way that keeping track of units in normal equations does. 

herefore, people generally ignore the units associated with logarithmic quanT
units of quantities after taking the antil
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consistent across the master equation 10.1. But if you ever get confused about units and want to 
make sure that things work out correctly, this is how to do it. 

 
 

rediction, sometimes a previous low-level Cartesian plot. Figures 10.3(a) through 10.5(a) are 
pical 

t 

 

 
nce you have plotted the points, you should use a aw th ht line that you 

ink best fits your data. You can then use this line to estimate the slope n using equation 10.6. 
 straight 

est fit 
d line where 0log =x . Note that this vertical line may not correspond 

 the left edge of your graph! In Figure 10.2, for example, it happens to be at the right edge of 
e graph, and on a general log-log graph, it could be almost anywhere. (If the line log

10.4 A PROCEDURE FOR EXPLORING POWER-LAW RELATIONSHIPS 

 Log-log graphs are most useful when you suspect your data has a power-law dependence
and you want to test your suspicion. Sometimes your suspicion is based on a theoretical
p
ty Cartesian graphs that could be power laws. Whatever the source of your suspicion, your 
next step is to plot the logarithms of your data as a low-level graph. If this graph looks like a 
pretty good straight line (within your experimental uncertainties) you can proceed to the nex
steps. 

 
       Fig. 10.3(a)    Fig. 10.3(b)   Fig. 10.3(c) 
 
 O  ruler to dr e straig
th
You can also estimate the value of the constant k in equation 10.1 by extrapolating your
line back to the vertical grid line where the value of the independent variable (let’s call it x) is 
equal to 1 (and thus 0log =x ): the value of log k is the vertical scale reading where your b
line crosses this vertical gri
to
th 0=x  is 
off the edge of your graph, you can often bring it onto the graph by changing the units of x. For 
example, if x is a distance ranging from 20 cm to 200 cm, the place where 0log =x  is when x =
1 cm, which will probably be off the left side of your graph. But if

 
 we change the units of x to 

eters, then the place whe  is where x is right in the middle of your 
ata.) 

To estimate the uncertainties of these quantities, draw a new line with the largest slope 
at yo

of k. 

m re 0log =x  = 1 m, which 
d
 
 
th u think might be consistent with your data, and another line with the smallest slope 
consistent with your data, and find the slope and intercept for each of these lines. The greatest 
and least slope will then bracket the uncertainty range of n and you can use the greatest and least 
values of klog determine the greatest and least values of k, which bracket the uncertainty range 
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 To go further than crude estimates, one needs the help of a computer. The program 
LinReg, which is discussed in Chapter 8 of this manual, makes it very easy to plot log-log graphs 

ertainty).  

 
radius). Plot a log-log graph of the  versus the distance on the graph paper provided as 
Figure 10.6 on the next page. 
 
Table 10.3: Planetary Periods vs. Mean Orbital Distances 
 
Planet Distance (AU) 

and find the best-fit slope (with its uncertainty) and the best-fit intercept (and its unc
 

EXERCISES 

Exercise 10.1 
The table below gives the orbital periods T (in years) of the planets known to Newton as a 
function of their mean distance R from the sun in AUs (where 1 AU = the earth’s mean orbital

 period

Period (yr) log(Distance) log(Period) 

Mercury 0.39 0.24   

Venus 0.72 0.62   

Earth 1.00 1.00   

Mars 1.52 1.88   

Jupiter 5.20 6   11.8

S 9.54 29.46   aturn 

 
Exercise 10.2 
Assuming that the pe d  distance are related by a power-law of the form nkRT = , where n 
is an integer or simple fraction, what does your graph suggest is the likely value of n? 

 
 

 
 
Exercise 10.3 
Find the value of k (with appropriate units) for the data of Table 10.3 from the intercept of your
log-log graph. Combine this w esult of exercise 10.1 to find the power-law equation (o
the typ

rio  and

ith the r f 
e given in equation 10.1) that seems to fit this data. 
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Figure 10.6 
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10. L) USING LOG-LOG PAPER     

 If you have more than five or ten data points, calculating the logarithms quickly gets 
tedious even with a calculator. To reduce this tedium (which would have been particularly 
gruesome in the era before computers and calculators), someone invented a special kind of graph 
paper called log-log paper. In effect, this kind of graph paper calculates the logarithms for you. 
 
 Imagine that you have data for an independent variable x that ranges from, say, 0.01 m to 
about 10 m. The values of xlog  would then range from about –2.0 to 1.0, and a useful horizontal 
scale might look something like this: 
 

       
Now, imagine that we were to also draw a scale immediately above this scale that showed the 
corresponding values of x. The two scales together would look like this: 
 

 
(Note how the pattern of the spacing between marks on the upper scale is identical for each 
power of 10.) Now, note that if we had graph paper that had its axes pre-labeled as shown in the 
upper scale, then we could locate points on the plot directly according to their value of x rather 
than having to compute the value of xlog  for each data point.   
 
 The way that the pattern repeats for each power of 10 makes it possible to create general 
and flexible graph paper with essentially pre-labeled scales. You can repeat the pattern as 
frequently as necessary in each coordinate to cover the range of your data.  The graph paper for 
Exercise 10.4 is an example of log-log paper which has 3 cycles of the pattern horizontally and 
vertically, making it possible to display data po whose x and/or y values span up to three 
powers of ten or decades. If you compare this g aper to the double-axis shown above, you 
will see that only the equivalent of x scale is displayed on this paper: the xlog  scale has been 
suppressed for the sake of clarity, but should be considered implicit. Also you will note that the 
publishers of the graph paper do not commit you to particular powers of 10: each decade is 
labeled as if it spans from 1 to 10. You can cross out the numbers shown to adapt the graph paper 
to the particular ranges of your data points. Figure 10.7 shows how you would do this for the 
harmonic oscillator data given in Table 10.1. 
 
 The point is that with just a little relabeling you can use graph paper like this to con
quickly a log-log graph without having to do any actual calculations of logarithms. This is g
for doing low-level, quickie graphs of a set of data that you think might reflect a power-law 

5 (OPTIONA
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relation nkxy = . You can even read the value of k directly from the graph by finding the point 
here 

hange
th

 Using log-log paper is optional in this course; normally you will be able to use a 
computer program. But you can purchase sheets of log-log paper from Connie (the department 
secretary) for 10¢ per page if you would like to use it for quick low-level graphing. 

igure : A log-log plot of the harmonic oscillator data in Table 10.1.  Notice that the paper 

w your best-fit line crosses the vertical line corresponding to x = 1 unit and reading the 
vertical coordinate of this point according to the vertical axis. 
 
 But how can you compute the slope n of data drawn on such graph? Remember each axis 

as an implicit linear scale that reflects the log of the value displayed. “Linear” means that the h
c  in the value of xlog  or ylog  is proportional to the physical distance on the sheet of 
paper. So to find the slope, all at you have to do is measure the rise of your line (in cm on the 
sheet of paper!) and divide by the run (in cm). 
 

 
F  10.7
has only one decade in each coordinate to match the range of the data. 
 

Mass (kg) 

1.0 

10.0

0.10 1.00 

T

 

ime(sec) 
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 ( ONAL) Exercise 10.4 
Plot the planetary orbit data in Table 10.3 on the log-log paper on the next page, and use the 
methods described in the previous section to find k and n assuming that nkRT = . Check that 
these agree  the values you found before.  
 

OPTI
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