
 

 

Equipment: Cow magnet and long copper tube and long aluminum tube, or “cow magnet slug” 

 

 

Faraday’s law: The induced emf for a closed loop is equal to the rate of change of the 
magnetic flux on the area enclosed by the loop, 

A
t

emf mag
B ∂

Φ∂
−=∆ . 

Where  

∫ ⋅=∆ l
rr

dENCBemf   and  
  
Φmag =

r 
B ⋅ ˆ n  dA∫ .   

(Tm2 = Weber) 

The book points out that, since ∫ ⋅= l
rr

dEC0 , we could just as well write ∫ ⋅=∆ l
rr

dEBemf  

 

Review: julie’s Lec W12_3, all questions; W13_1 Questions 1-3 

 

Different books dub slightly different things “Faraday’s Law”, but they are often sloppy about 
specifying exactly what they mean.  Our book seems to be restricting the definition to just the 
emf that arises because of a change in magnetic field. 

Look at Clicker questions 2 & 1. 

Relationship between Faraday’s law and motional emf: 

Let’s look again at the circuit in a uniform magnetic field with a moving bar.  
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Recall that we defined emf as (non-coulombic) work per unit charge, so 
q

LF
emf

rr
⋅

= .  

Previously, we found the “motional emf” is vBL by considering the magnetic force   q
r 
v ×

r 
B  on the 

electrons in the moving bar.  

Faraday’s Law can be generalized to include motional emf as well as that due to changing B. 

For my own amusement (after Purcell): 
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(where ∆l is how much the border has moved during dt.) 

 Faraday’s Law relates the first term in the integral to the non-coulombic electric field: 

BemfldEAd
dt
Bd

∆−=⋅−=⋅ ∫∫
rrr

r
 

whereas  

( ) ( ) motionalemfldBvAdBv =⋅×=⋅××∇ ∫∫
rrrrrrr

 

so,  

∆Φ∆ =+=
Φ

− emfemfemf
dt

d
motionalB

B  

 

For more general consumption: 

While this can be done in terms of the integral for magnetic flux, the same result can be more 
easily obtained by consider the change in flux through a differentially small patch of area, over 
which B is relatively constant, 

( ) ( ) ( ) ABBB
B emfemfLvBemf

dt
dx

LBemfA
dt
d

BB
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dt
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dt
d

∆∆⊥∆⊥∆⊥⊥⊥ −−=+−=+−=+==
Φ
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Some texts call this Faraday’s Law.  Whatever we call it, the fact of the matter is that, either way 
your magnetic flux changes, emf is induced: 

∆Φ−=
Φ

emf
dt

d B . 

While we derived this just considering a differential patch of area (over which B is uniform and 
along which v is constant) the final result holds for a much larger area (over which B is not 
uniform and along which v is not constant.)  The justification is that a general area can be 
constructed out of a quilt of such differential patches. 

 

 

Rotation changes Aperpendicular, and flux – induces emf. The general result even holds when the 
area or field is changing direction (say, via rotation). Recall the rotating coil that we’d 
considered in a previous chapter.  Suppose the coil starts perpendicular to the magnetic field and 
rotates at a rate ω. The angle of the coil is θ = ωt . 

 
The magnetic flux through the loop is: 

( )tBhwtBAt ωcos)()( mag ==Φ ⊥ , 

where A⊥  is the area perpendicular to magnetic field. The induced emf is: 

emf = −
dΦmag

dt
= ωBhwsin ωt( ). 

 

Summary: 

An emf around a loop can result from a changing magnetic flux in two ways:  

• the magnetic field can change  

• the area of the loop can change (in magnitude or orientation)  

The magnetic flux is Φmag = B⊥ A , so the emf is: 

emf =
dΦmag

dt
=

d
dt

B⊥ A( )=
dB⊥

dt
A + B⊥

dA
dt

. 
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There are some subtle differences between the two terms.  

• ∆B. If the magnetic field is changing, there is a non-Coulomb electric field   
r 
E NC  that curls 

in the region of changing flux. That means that 
  
emf =

r 
E NC ⋅ d

r 
l ≠ 0∫ .  So the force driving 

a current around a loop is electric. 

• ∆A. If the area is changing because part of the loop is moving through a magnetic field, 
there is a magnetic force which drives electrons around the loop. The non-Coulomb force 
in this case is the magnetic force. 

In both cases, the size of the emf is equal to the rate of change of the magnetic flux.  Some 
situations can be seen as one or the other effect depending on the reference frame – but there is 
not always one frame that works for all parts of the circuit, so that more generally only works 
locally. 

 

 

Coils : 

Suppose there is a coil with N  turns, instead of a single loop. If the turns are all close together, 
the induced electric field   

r 
E NC  is approximately the same for each one. The emf between the ends 

of the coil is the integral of   
r 
E NC  along the entire length: 

  
emf =

r 
E NC ⋅ d

r 
l 

N turns
∫ = N

r 
E NC ⋅ d

r 
l 

one turn
∫

 

 
  

 

 
  = N emfone turn( ). 

If the magnetic flux through one loop is Φmag , the emf can also be written as: 

dt

d
N magemf

Φ
−= . 

Several ways to change the Magnetic Flux:  

Exercise – Come up with ways to change the magnetic flux through a coil using either a second 
coil or a permanent magnet 

All of the following will result in an induced emf in the coil 2 on the right.  

1. Change the current in coil 1 

 I1
   
r 
B 1

 
2. Move coil 1 (with current through it) 

   
r 
v 1    

r 
B 1  

3. Move coil 2 (with current through coil 1) 
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r 
v 2    

r 
B 1  

4. Rotate coil 1 

 

   
r 
B 1   

 
Rotate coil 2 

 

   
r 
B 1   

5. Move the magnet relative to the coil (includes moving coil toward magnet) 

   
r 
v 1    

r 
B 1

 N S

 
6. Rotate the magnet  

 

   
r 
B 1 

 N 
 S 

 
7. Rotate the coil  

 

   
r 
B 1 

 N  S 

 
 

Clicker Questions 22.2 (about magnet dropped down tube)  This is one of the situations 
described – moving the magnet relative to the coils / tube walls. 

Demo: drop a magnet down a copper tube (not ferromagnetic) –very slow compared to free fall!  

Each cross section of the pipe can be considered a loop. There will be induced currents around 
the pipe. These in turn produce magnetic fields, so it’s like having two magnets interact.  You 
will explain the slowing in terms of forces in Prob. 22.1 (c). 

 

Inductance: 

Faraday’s Law tells us how an electric field and associated emf are related to a changing 
magnetic field.  Of course, a changing magne tic field is caused by a changing current, so we 
should be able to directly relate the emf to its root cause – the changing current.  We’ll do that for 
the simple case of a solenoid and then generalize. 
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Suppose you have a circuit with a loop or loops of wire (even the simplest circuit makes one 
loop!). When current flows, there is a magnetic field produced that passes through the loop(s) 
which is proportional to the current. Therefore, there is a magnetic flux that is proportional to the 
current. Call the proportionality the “inductance” (or “self- inductance”) L, so: 

Φmag = LI . 

When the current changes there will be an induced emf according to Faraday’s law: 

dt
dI

L
dt

d B −=
Φ

−=indemf . 

The negative sign indicates that the induced emf will point against the changing current 
(upstream if the current tries to increase, downstream if it tries to decrease), Consider the 
example of a single loop of wire with resistance R connected to a variable power supply. What 
direction is the emf? 

 

 variable 
 power 
 supply 

 I (increasing) 

   
r 
B  

 
If the power supply is turned up and the current flowing CW increases, the change in the 
magnetic field   ∆

r 
B  is downward. Since   − d

r 
B dt  is upward, the change in magnetic flux will 

induce an emf that will act like a “backward” battery which opposes the change in current. 
Recall the simulation I showed you last time – this comes from the electric field that points 
opposite to the charges’ accelerations. 

 

 

Example: inductance of a solenoid with a radius R, length d, and N turns (tightly wound) 

The magnetic field inside the solenoid is: 

B =
µ0NI

d
, 

 

along the axis of the solenoid. The magnetic flux is (approximately) the same for each turn of 
the solenoid, so: 

Φmag
solenoid

= NΦmag
one turn

= N BA[ ]= N µ0NI
d

 
 
 

 
 
 πR2( ) 

 
 

 

 
 =

µ0N 2πR
d

 

 
 

 

 
 I . 

Therefore, self- inductance of the solenoid is: 
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L =
µ 0N

2

d
πR2 . 

 

We’ll look at two examples of inductors in circuits. The symbol for an inductor in a schematic 
circuit diagram is a coil (because that’s what they usually are). 

 

 

RL Circuit: a battery is connected to a resistor and inductor in series at time t = 0 

  R 

 L  emf battery  I 

 
The loop rule in the CW direction (with the conventional current I) gives: 

∆Vbattery + ∆Vresistor + ∆Vinductor = 0  

emfbattery − IR − L
dI
dt

= 0 . 

The second term is negative because the electric potential drops across a resistor in the direction 
the current moves. The third term is negative because the emf of the inductor is in the opposite 
direction as that of the battery. The solution with the initial condition that I t = 0( )= 0  is (check by 
substituting it back into the diff. eq.): 

I t( )=
emfbattery

R
1− e

−
R
L

 
 
 

 
 
 t 

 
 
 

 

 
 
 
. 

Features of the solution: 

• The inductor is most important at early times when the current is changing rapidly. 

• As the current changes more slowly, the inductor becomes less important. After a large 
enough time, the current is essentially constant and depends only on the battery and 
resistor: I → emfbattery R. 

• The “time constant” for the circuit is L R, which determines the length of the transient 
behavior. All circuits have some inductance, but it is often very small so the current 
comes to its “final” value quickly. 

LC Circuit: a circuit with just a capacitor and an inductor (idealization because there is always 
some resistance in a real circuit) 
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 L  C  I 

 
Suppose the upper plate of the capacitor has an initial charge of +Qi  at t = 0. 

The loop rule in the CW direction (with the initial conventional current I) gives: 

∆Vcapacitor + ∆Vinductor = 0  

1
C

Q− L
dI
dt

= 0 . 

The current is related to the charge by: 

I = −
dQ
dt

, (taking Q to measure the charge on the capacitor) 

because the current is larger in the direction shown as the capacitor discharges (as Q decreases). 
This gives: 

1
C

Q+ L
d 2Q
dt2

= 0  

d 2Q
dt2 = −

1
LC

 
 
 

 
 
 Q . 

The solution (confirm by substituting it back in the diff. eq.) is: 

Q t( )= Qi cos
1
LC

t
 

 
 

 

 
  

so: 

I t( )= −
dQ
dt

=
Qi

LC
sin

1
LC

t
 

 
 

 

 
 , 

The current oscillates back and forth with a period: T =2π LC . In a real circuit with resistance, 
the current will also decrease over time because energy is dissipated as heat. 

 

 

 


