
 
 
Equipment: 
 
Inductance: Function Generator, nestable solenoids, oscilloscope. 
VPython 
 
Intro:  Faraday’s Law as Correlation, not Causation 

• Contextualizing Faraday’s law 

o Stationary Charges.  In the first chapter of this book, we met the electric 

interaction of two stationary charges: 213
21

21
4

1
21 ←

←
← = r

r
qq

F
o

rr
πε , for convenience sake, 

we broke this into two factors, q1 and 213
21

2
4

1
12 )( ←

←

= r
r
q

rE
o

rrr
πε .  That allowed us to 

focus on the “electric field” of a source charge without having to worry about the 
other charge. 

o Moving Charges.  A few chapters later, we considered two moving charges.  The 
easiest way to transition from stationary to moving is to first analyze the situation 
in the frame of one of the two charges (where it appears to be stationary), and 
then transform into a frame in which it’s moving.  What you get has two distinct 

terms: 
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§ Where )()( 21 thennow trtrr
rrr

−= , that is, the separation between the probe 
charge and where the source charge was back when it emitted the fields 
that the probe is experiencing now.  

o The first term in curly brackets depends only on the “source’s “ velocity, while 
the second term depends on the velocity of the test charge too.  Identifying the 
first as an electric interaction and the second as a magnetic interaction, we have  
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o Doing some rephrasing, in terms of current locations of both charges gives 
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Thurs., 3/26 
Fri., 3/27 

Quiz Ch 21, Lab 9 Ampere’s Law 
22.1-2,10 Intro to Faraday’s & Lenz’s 

 
RE26 

Mon., 3/30 
Tues., 3/31 

22.3-4,.7 Faraday & Emf & Inductance 
 

RE27 
Lab 9 Write-up  HW21:RQ.12, 15,17; P.20, 23, 26  

Look up the master 
force equation 
from the back of 
Griffiths 
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o Accelerating Charges.  So, we started with stationary charges, then went for 
moving charges; the next natural step is accelerating charges. Now you get  
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Again, the first clump of terms does not depend on the test charge’s velocity, and 
the second does.  So the first set is the electric interaction and the second is the 
magnetic interaction.  Notice that the electric interaction includes a term pointing 
in a direction that is distinctly not along r (since it’s got an r×a in it).  
Furthermore, the first term points from where the source charge would now be if it 
were going at a constant speed, but not from where it actually is (since its’ 
accelerating).  So there are explicit and implicit dependences on the acceleration 
of the charge. 

 

Notice that we have one term of the electric field that points radially (our good, 
old “Coulombic” field) but we also have a term that points in some direction 
dependent on the acceleration of the sources.  This is the Faraday field. 

Here’s what it looks like for just one accelerating charge.  

    
Generalize to currents 

• Now, if we have whole currents of charges, then these relations get rephrased, and most 
generally in terms of current densities and time varying current densities (instead of 
velocities and accelerations).  It is the latter, time varying current densities that are 
responsible for the Faraday Electric Field, a.k.a., the “non-coulombic” field. 

Here’s what it looks like for a current of accelerating charges. (the current is moving and 
accelerating to the right). 
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Notice that this electric field opposes the change in current.  This is a very general 
characteristic of the Faraday Electric Field. 

Contradicting book 

• The book, along with most introductory texts, slips and says that the “non-coulombic” 
electric field is produced by the time varying magnetic field.  That may well have been 
how Faraday interpreted what he observed, but over a century has passed and we’ve 
learned a few things – both this electric field and a time varying magnetic field are 
produced by the same thing – time varying current densities.  

• Faraday’s Law is undeniably correct, but it does not represent a causal relation, it 
represents a correlation between two effects of a shared cause.   

 

Getting Familiar with Faraday’s Electric Field 

The simplest example for seeing the Faraday effect is a solenoid with a changing current. The 
magnetic field points along the axis inside the solenoid and is approximately zero outside as 
shown below.  

 
Let’s say a counter clockwise circulating current increases, the referencing the illustration of an 
accelerated current’s field, we should get a clockwise electric field.   

Induction.  Meanwhile, if the counter clockwise current is increasing, then the magnetic field it 
produces is also increasing.  So, correlated to the curled electric field is the increasing magnetic 
field.  The common language is to say that the changing magnetic field “induces” the curled 
electric field, and this process is called magnetic induction. Unfortunately, this is historic, but 
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inaccurate language (much like “heat flow”) – it’s the changing current density that causes both 
magnetic and electric effects.  It is sometimes called a non-Coulomb electric field   

r 
E NC .  

 

That said, the correlation between the fields is far simpler to express than is the causation 
between the currents and the fields. 

 

Direction of the Curly Electric Field:  

The right hand rule is similar to the one used to determine the direction of the magnetic field 
produced by a current: 

With your right thumb pointed in the direction of   − d
r 
B dt , your fingers will 

curl in the direction of   
r 
E NC .  This is the opposite of the direction of the change 

in the current density that produces the change in magnetic field. 

To use this rule, it is useful to know that the direction of the change in the magnetic field for a 
small time   ∆

r 
B  is the same direction as   d

r 
B dt . 

Examples: 

(1)   
r 
B  is out and increasing 

   
r 
B 

   
r 
B i

  
r 
B f

 
The direction of the change in the magnetic field   ∆

r 
B =

r 
B f −

r 
B i is outward as shown below.  

 Side View
 (out to right)

   −
r 
B i

  
r 
B f

   ∆
r 
B 

 
The direction of   − d

r 
B dt  is inward (because of the minus sign), so   

r 
E NC  curls clockwise. 
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r 
B 

   −d
r 
B dt

   
r 
E NC

 
(2)   

r 
B  is in and decreasing (Exercise for students) 

The direction of the change in the magnetic field   ∆
r 
B =

r 
B f −

r 
B i is outward as shown below.  

 Side View
 (out to right)

   −
r 
B i

  
r 
B f    ∆

r 
B 

 
The direction of   − d

r 
B dt  is inward (because of the minus sign), so   

r 
E NC  curls clockwise. 

 

 

 

Faraday’s Law: 

Magnetic flux is defined as: 

∫ ⋅=Φ AdB
rr

mag , 

We already encountered this in Ch 21; however then we were thinking of the flux out through a 
closed surface (like a ball), and that summed to 0.  Now we’re just considering the flux through 
an open surface (like sheet of paper).   

The induced emf for a closed loop is defined as: 

∫ ⋅= l
rr

dENCFemf . 

Faraday’s law: The induced emf for a closed loop is equal to the rate of change of the 
magnetic flux on the area enclosed by the loop, 

A
t

emf mag
F ∂

Φ∂
−= . 

Notation: the subscript “F” indicates that we’re just talking about the emf due to Faraday’s effect 
and the “A” indicates that we’re holding Area constant.  We’ll later see that holding B constant 
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and allowing A to vary also gives rise to an emf – what we’ve already come to call “motional” 
emf.  

 The minus sign is to remind you how to determine the direction of   
r 
E NC  from   − d

r 
B dt . 

This is a new law, which cannot be derived from what we have done previously.  Mind, to the 
extent that all magnetic phenomenon can be derived from electric ones and the proper relativistic 
transformations, this can be reasoned (I’ve seen a number of papers do so); however, while that 
is, on some philosophical level, comforting, practically, it’s too much of a pain to do. 

 

Example: A loop around a solenoid 

Suppose the solenoid has a radius r1 and   
r 
B 1 of the solenoid is out and increasing at a constant 

rate   d
r 
B 1 dt . Consider a loop of radius r centered on the solenoids axis. By symmetry, the 

non-Coulomb electric field   
r 
E NC  must be the same size everywhere on the loop, so: 

  
emf =

r 
E NC ⋅ d

r 
l ∫ = ENC 2πr( ) 

The flux on the surface surrounded by the loop depends on the size of the loop: 

(1) r > r1 – magnetic flux inside whole solenoid contributes, so: 

Φmag = B1 πr1
2( ) 

   
r 
B 1

 r

 
In this case: 

emf =
dΦmag

dt
 

ENC 2πr( )=
dB1

dt
πr1

2( ) 

ENC =
r1

2 dB1 dt( )
2r

, 

which falls off as 1/r. 

(2) r < r1 – only magnetic flux inside loop contributes, so: 

Φmag = B1 πr 2( ) 



Friday, March 27, 2009  7 

In this case: 

ENC 2πr( )=
dB1

dt
πr 2( ) 

ENC =
r dB1 dt( )

2
, 

which increases as r. 

Two Solenoids. 

Returning to 
A

t
emf mag

F ∂

Φ∂
−= , If we have just one loop, it has area A, and flux BA.  If we have 

two loops, it has area 2A, and flux 2BA,… N loops means flux NBA, and corresponding 

A

N
t

emf mag
F ∂

Φ∂
−=  

While the emf around one loop may be too small to measure.  The emf along a coil of 500 loops, 
i.e., along a solenoid, may be quite measurable. 

Demo: One solenoid nested inside another.  

 

Loop outside solenoid 

What about a loop that does not surround the solenoid with a changing current? 

 
There are two ways to explain why the emf for the loop is zero: 

• The magnetic field outside the solenoid is approximately zero, so there is no change in 
the magnetic flux as the current changes. 

• The length of the arcs is proportional to r and the size of the non-Coulomb electric field 

  
r 
E NC  is proportional to 1/r (outside the solenoid). Notice that   

r 
E NC  points along   d

r 
l  for one 

arc and opposite to   d
r 
l  for the other arc.   

r 
E NC  is perpendicular to the straight segments. 

The shape of the loop doesn’t matter (any loop can be approximated as arcs and radial 
segments). For example, the readings on ammeters or voltmeters just depends on whether or not 
the loop is around the region where the magnetic flux is changing.  
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Friday, March 27, 2009  9 

 

What follows are background notes for the instructor.  

(Note: Griffiths illustrates the equivalence of the two approaches: using Faraday’s law with 
retarded potentials and using Coulomb’s law with relativistic transformations for the simple case 
of constant velocity.  The derivation of Eq’n 10.68 uses V and A (and thus Faraday’s) and 
retarded potential while the derivation of the same relation, now dubbed Eq’n 12.92 uses just 
Coulomb’s and relativistic transformations.)  
 

Prior to this chapter, we’d seen that an electric field is generated by charges.  For a simple, 
stationary charge, Coulomb’s law gives: 
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Where the o subscript stands for “observation location.” 

If we have a distribution of point charges, the field is found by the Superposition Principle: 
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where ρ is the charge density, which is a function of position.  

Later, we noted that the electric field due to a moving charge is a little different.  One way to find 
this is to transform from the frame in which the charge is stationary to one in which it is moving 
at a constant speed v.  Then, the electric field of a point charge sensed by the observer is 
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  (Griffiths 3rd Ed. 12.92) 

where q is the angle between v and r. 

 

Note: one might be able to generalize this for an accelerating charge without appealing to 
General Relativity – by successively transforming to frames in which the charge is moving at 
incrementally different velocities.   

 

If we have a distribution of point charges, each moving at its own velocity, I imagine that this 
would look like   
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Whether the charge is moving or not, Gauss’s law holds:  
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Interestingly, Griffith’s also arrives at 12.92 by a different rout (labeling the equation 10.68).  
The two main features of this other rout are that it relates the electric field now to the charge 
distribution back then, in particular, back when the field was emitted that, traveling at the speed 
of light, gets to us now: tthen = tnow – r/c.  But in this case, Coulomb’s law is not enough, a new 
law / a new mechanism for generating electric field is required: Faraday’s Law.  One way of 
phrasing this law is 
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        (from Griffiths 3rd 10.27, .28, .29) 

Or, putting it in slightly more familiar form: 
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For a point charge source, rather than a continuous current, this is  
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For comparison, the Colombic term is 
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So the total electric field of a moving point charge is their sum:  

( )
( ) ( )( ) ( )( )[ ]avrcrvrcvcvvrcr

vrcr

qc
tE

o
now

rrrrrrr
rr ×−×+−−−⋅−

⋅−
= ˆˆ

4
1

)( 22
3πε

       (10.65, w/ .64) 

Which reduces to 12.92 / 10.68 if there is no acceleration.  

This is a rare causal phrasing of Faraday’s Law – that an electric field is generated by a changing 
current density.  In essence, the total electric field depends not just on the charge distribution 
(Coulomb’s Law), but how the flow of charges is changing (Faraday’s Law).   

Recall that current is the source of magnetic field.  So this relationship between electric field and 
current implies one between electric field and time varying magnetic field.  That is the much 
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more common way of phrasing Faraday’s law, but, from a philosophical stand point, it’s worth 
noting that the relationship between the electric and time varying magnetic fields is a correlation 
while the one between electric field and time varying current is a causation – time varying 
magnetic field does not cause an electric field, rather, time varying current causes both electric 
and time varying magnetic fields.   

It’s also interesting to note that, from the perspective of any one of the source charges, it itself is 
not moving, so it itself is exerting a force on another charge only via a coulombic electric field.   

 

 


