
 
 
 
Handouts: 

• Equation Sheet 

• Lab 

 

Practice with Gauss and Ampere. 

See ppt. 

 

Integral vs. Differential formulation 

Whether I say “my brother’s older than I am” or “I’m younger than my brother”, I’m 
communicating the exact same relationship. Similarly  

∫ = )()( xFdxxf  and  )()( xfxF
dx
d

=  

Communicate the exact same relationship.  If one is true, the other’s true. 

 

In this chapter, we’ve developed the following four integral relations: 

 

Maxwell’s Equations (so far): 

 
  

r 
E ⋅ ˆ n  dA∫ =

qinside∑
ε0

 Gauss’s law for electricity 

 
  

r 
B ⋅ ˆ n  dA∫ = 0 Gauss’s law for magnetism 

 
  

r 
E ⋅ d

v 
l ∫ = 0 incomplete (will be Faraday’s law) 

 
  

r 
B ⋅ d

r 
l ∫ = µ0 I inside path∑  Ampere’s law (incomplete) 

The first two are surface integrals and the last two are path (line) integrals. The last two 
equations are incomplete and we will modify them in Ch. 22. 

Now, we’re going to invert them and see what the derivative forms look like.  There’s no new 
information in the new forms, so why bother? 

The same reason we bothered to rephrase the information in the momentum relation in 
the form of the energy relation: we’ll get a tool that’s easier to use, both mathematically and 
conceptually, in specific situations. 
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In point of fact, we won’t be using these new tools much in this course, but they are part of the 
physics cannon (right up there with the momentum and energy principles) and you will get more 
familiar with their use in our advanced courses. 

 

See PowerPoint  

(1) Gauss’s law 

Consider a small box with edges along the coordinate axes.  

 ∆x

∆y

∆z

 x ,y, z( )
 Ex( x)

Ex ( x + ∆x )

 x

 y

 z
 

Calculate the electric flux per volume in the limit that the volume goes to zero, which is the 
divergence of   

r 
E : 

 

Divergence 

• Motivation. Return to Rain 

o Recall that the general idea of a “flux” is a flow rate: the charge flux down a wire, 
dq/dt, is the current.  Similarly, in the example of rain that we used to motivate 
the definition of flux, the rate at which water enters a room through some open 

windows would be a flux. ∫ ⋅==Φ Adv
dt

dm
ww

w
w

rr
ρ  

o Normalizing per Volume. Now, if I told you that 1 kg of water rained in per 
minute, you’d be pretty worried – until I told you that the room was the 
Superdome- that volume’s huge.  1 kg / minute leak isn’t so bad as if we were 
talking about, say , this room.  This example illustrates that flux alone doesn’t tell 
the whole story.  Sometimes you’re more interested in flux per volume.  On a per 
volume basis, the same flux into the Superdome is nothing compared to that into 
this room.  Flux out per volume is “Divergence.” (Conversely, I suppose we’d call 
Flux in per volume “Convergence”=–Divergence)   

Vol

Adv
Vol

dt
dm

Vol
div

ww
w

w ∫ ⋅
==

Φ
≡

rr
ρ

 

Math. 

Now for a little math.  



Wednesday, March. 25, 2009  3 

  

div
r 
E ( )=

lim
∆V → 0

r 
E ⋅ ˆ n  dA∫
∆V

=
lim

∆V → 0

Ex x + ∆x( )− Ex x( )[ ]∆y∆z

∆x∆y∆z
+

Ey y + ∆y( )− Ey y( )[ ]∆x∆z

∆x∆y∆z
+

Ez z + ∆z( )− Ez z( )[ ]∆x∆y

∆x∆y∆z

 
 
 

  

 
 
 

  

=
lim

∆x → 0

Ex x + ∆x( )− Ex x( )[ ]
∆x

+
lim

∆y →0

Ey y + ∆y( )− Ey y( )[ ]
∆y

+
lim

∆z → 0

Ez z + ∆z( )− Ez z( )[ ]
∆z

=
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

 

The other side of Gauss’s law over the volume in the limit that the volume goes to zero is: 

lim
∆V →0

1
ε0

qinside∑
∆V

 

 

 
 

 

 

 
 
=

ρ
ε0

, 

where ρ is the charge density. The differential form of Gauss’s law is: 

( )
0

div
ε
ρ

∂
∂

∂

∂

∂
∂

=++=⋅∇=
z

E
y

E

x
E

EE zyx
rrr

 

Note that this is a scalar equation. In the second form, the “del” operator is 
  

r 
∇ =

∂
∂x

ˆ i +
∂
∂y

ˆ j +
∂
∂z

ˆ k .  

Relativistic 

• The book argues that divergence is inherently relativistically correct.  The argument goes 
something like this.   

o Must handle moving sources.   

§ To be relativistically correct means to be able to correctly handle moving 
charges.  So, we must argue that it handles them correctly.  The difficulty 
with moving charges is that it takes time t = R/c for field to emanate from 
a charge to a point a distance R away.  In the mean time, the charge has 
moved a distance r = vt = Rv/c where v < c.   

§ Coulomb’s Law’s failure  (no retardation time). Coulomb’s Law’s  
problem is that it tries to say what the field is a distance R away is at a 
given instant based on where the charge is at that same instant (without 
allowing for the fact that that isn’t where the charge was when the field 
was emanated).   

• Can generalize Coulomb’s Law: applying Coulomb’s law in the 
frame in which the source is stationary, and transforming the 
expression to the frame in which the source is moving, you can 
have a relativistcally correct version.  

§ You might imagine that the integral form of Gauss’s Law has the same 
problem – we’ll return to that objection.   
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§ Divergance’s work-around (no need for retardation time). To find the 
divergence, we imagine shrinking the volume / area / R down to zero.  In 
the process, we shrink t = R/c to zero and r = vt to zero.  So, the 
divergence talks about the field at the source and how it depends on the 
source at that same time.  Since it takes no time for the field to emanate, 
the source hasn’t moved, so the divergence relation holds regardless of 
whether the charge is moving.  Voila – the divergence relation is 
inherently insensitive to charge motion – relativistically correct, though 
perhaps it would be more appropriate to call it “relativistically agnostic.” 

§ Integral Form.  Now for the integral form.  Since the integral form is 
simply the mathematical inverse of the differential form, the two forms 
express the exact same relationship between source and field (just like 
“I’m younger than my brother” and “my brother’s older than I am.”)  So if 
one way of phrasing the relationship is relativistically correct, then so 
must be the other.   

 

Similarly, we can get a differential version of Gauss’s law for magnetism: 

( ) 0div =++=⋅∇=
z

B
y

B

x
B

BB zyx

∂
∂

∂

∂

∂
∂rrr

 

 

Recall that the electric field is minus the gradient of the electric potential: 

  

r 
E = −

r 
∇ V = − ∂V

∂x
,∂V
∂y

,∂V
∂z

 

 
 

 

 
 . 
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Gauss’s law can also be written in terms of the electric potential as: 

  

r 
∇ ⋅ −

r 
∇ V( )= ∂

∂x
− ∂V

∂x
 
 
 

 
 
 +

∂
∂y

− ∂V
∂y

 

 
 

 

 
 +

∂
∂z

− ∂V
∂z

 
 
 

 
 
 =

ρ
ε 0

 

∇ 2V =
∂2V
∂x 2 +

∂ 2V
∂y 2 +

∂ 2V
∂z2 = −

ρ
ε0

, 

which is known as Poisson’s equation and ∇ 2 =
∂ 2

∂x 2 +
∂ 2

∂y 2 +
∂ 2

∂z2  is the Laplacian operator. In 

empty space ( ρ = 0 ): 

∇ 2V =
∂2V
∂x 2 +

∂ 2V
∂y 2 +

∂ 2V
∂z2 = 0 , 

which is called Laplace’s equation.  

 

 

(2) Ampere’s law 

Consider a small rectangular loop in the xy plane.  

 ∆x
∆y

Bx y + ∆y( )

Bx y( ) x,y, z( ) x

 y
 z

 
Calculate the path integral of the magnetic field as the area of the loop goes to zero, which is a 
component of the curl of   

r 
B : 

  

curl
r 
B ( )[ ]

z
=

lim
∆A →0

r 
B ⋅ d

r 
l ∫

∆A

=
lim

∆A →0

Bx y( )∆x + By x + ∆x( )∆y − Bx y + ∆y( )∆x − By x( )∆y

∆x∆y

 

 
 

 

 
 

=
lim

∆y →0

Bx y( )− Bx y + ∆y( )
∆y

 

 
 

 

 
 +

lim
∆x →0

By x + ∆x( )− By x( )
∆x

 

 
 

 

 
 

=
∂By

∂x
−

∂Bx

∂y
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The other side of Ampere’s law in the limit that the area goes to zero is: 

lim
∆A →0

µ0

I inside,in z direction∑
∆A

 

 

 
 

 

 

 
 

= µ0Jz , 

where Jz  is the current density (current per area) in the z direction. If we looked at loops in the xz 
and yz planes, we would find that: 

  
curl

r 
B ( )=

r 
∇ ×

r 
B = µ0

r 
J . 

This is still incomplete like the integral version. Similarly, we have an incomplete expression: 

  
curl

r 
E ( )=

r 
∇ ×

r 
E = 0. 

This will be non-zero if the magnetic field is changing, which is the topic of Ch. 22… 

 

Differential forms of the equations: this is a look ahead to PHYS 332 

 
  
div

r 
E ( )=

r 
∇ ⋅

r 
E =

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
=

ρ
ε0

 Gauss’s law for electricity 

 
  
div

r 
B ( )=

r 
∇ ⋅

r 
B =

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0  Gauss’s law for magnetism 

 
  
curl

r 
E ( )=

r 
∇ ×

r 
E = 0 incomplete (will be Faraday’ s law) 

 
  
curl

r 
B ( )=

r 
∇ ×

r 
B = µ0

r 
J  Ampere’s law (incomplete) 

In all of the above, the “del” operator (must be applied to something) is 
  

r 
∇ =

∂
∂x

ˆ i +
∂
∂y

ˆ j +
∂
∂z

ˆ k . 


