
 

 

Equipment  

Announcements 

Last Time  

 Surface Charge Density gradient causes electric field parallel to wire, necessary for 
constant i. 

This Time  

18.8 Energy in a Circuit 

From before, we know that the electric potential difference (potential energy per charge) around 
any closed loop is zero. If a round trip passes through “elements” (battery, wire, resistor, etc.) 1, 
2, etc., then: 

 Loop Rule :   ∆V1 +∆V2 +K= 0  around any closed loop in a circuit 

 

18.8.1 Potential Difference Across a battery  

18.8.2 Internal Resistance 

In this chapter, the book simply introduces the idea that the internal electric field must balance 
the charge’s drive to move across the battery.  If we represent the latter as a non-coulombic 
force, FNC, then in equilibrium, FNC = eE. When things aren’t in balance, charge is flowing.  The 
net force would be FNC – eE.  Using the idea of mobility, one would say, in this case it’s the 
difference between these two forces that drives the drift of charges: v = u(FNC/e – E). 

The voltage drop across the battery is 

∆Vbatt = EC s , 

where s is the distance between ends of the battery. The change in potential energy associated 
with the noncoulombic force driving a charge across the battery is ∆U = FNCs, or dividing that e 
to get the energy per charge, we can define that as  

emf = FNCs/e 

In the next chapter, we will learn how to model the internal resistance of batteries, which is a 
resistance to the flow of current. For an ideal battery, the internal resistance is negligible. 

 

18.8.3 Field and Current in a Simple Circuit 

The analysis of a simple circuit with a uniform wire is easy.  
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19.1-5 Capacitor Circuits 
 
19.6-.14 Capacitor & Resistor Circuits 
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For a complete counterclockwise loop around the circuit: 

∆Vbatt +∆Vwire =0 , 

emf + −EL( )= 0, 

E =
emf

L
.. 

18.8.4 A Parallel Circuit: two different paths  

Consider the circuit below with multiple paths. The loop rule can be applied to any closed path.  

 
For the clockwise path drawn (note the sign differences compared to above): 

E2L2 + E3L3 −emf = 0  

For a clockwise path through L1, L3, and the battery: 

E1L1 + E3L3 −emf = 0  

Together, those equations imply: 

E1L1 = E2L2, 

which we could also get with a loop through just L1 and L2 (if clockwise: E1L1 − E2L2 =0). 

 

 

ADD A BETTER EXAMPLE WITH NUMBERS! 

18.8.5 Potential difference across connecting wires 

18.8.6 General use of the loop rule 

18.9 Application:  Energy in Circuits  
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Sometimes the textbook “flattens out” circuits to make graphs of electric potential and electric 
field like the following.  

 
Note that the electric potential must return to the same value (not necessarily zero). Also, the 
magnitude of the electric field is minus the slope of the electric potential.  

 

18.10 Application of the Theory  

18.10.1 Application: doubling the length of a wire  

18.10.2 Application: doubling the cross-sectional area of a wire  

18.10.3 Quantitative measurements of current with a compass 

18.10.4 How does current know how to divide between parallel resistors? 

Before the second branch is connected at the second end, it becomes negatively charged and no 
current flows into it. 

 
When the second branch is connected, the charges rearrange to guide current through it. 
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The potential difference (EL) must be the same size for each branch (loop rule), but the currents 
may be different. The one that conducts better will have more current ( i = nAuE ). 

 

18.10.5 Application: round bulb and long bulb in series 

Example: Round bulb and long bulb in series 

If you try this, the long bulb will light up, but not the round one. 

 
The current must be the same through both bulbs (node rule). Suppose the mobility u is the 
same for both bulbs, then: 

  
nAruEr = nAl uEl and El =

Ar

Al

Er  

We know that the filament of the round bulb is thicker,   Ar > Al , so   Er < El .  

We can also compare the electric field of the round bulb in this circuit with the field in a 
circuit with just the round bulb. The lengths of the filaments in the two bulbs are 
approximately the same, so the loop rule gives: 

  2 emf( )− ErL −ElL = 0 , 

  
2 emf( )= Er L 1+ Ar

Al

 

 
 

 

 
 , 

  
Er =

2 emf( )
L 1+ Ar Al( )

<
2 emf( )

L
, 
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because   Ar Al >1. The electric field in the round bulb when only it is connected is 
Er,bright =2 emf( ) L . The electric field in the round bulb (and the change in electric potential 
across it) is too small to make it glow.  

In addition, the round bulb is not as warm so its mobility is higher. That means an even 
smaller electric field than estimated above is needed to drive the current through it. 

 

18.10.6 Application: Two batteries in series 

18.11 Detecting Surface Charge 

 

Monday: Applications (5 Experiments!) 
 
 
What is incorrect about the surface charge in each figure below? 
 

 
 

 
 



Experiments: If the distance to the wire is the same, then I ∝ Bwire. The magnetic field is found 
using Bwire =BEarth tanθ , but the field is approximately proportional to the deflection angle is less 
than 15°. 

Exp 18.18 – Twice the length of Nichrome wire should result in half the current. The resistance 
of the Nichrome is much more than the copper wire, so extra connecting wires don’t matter 
much. The potential difference (EL) must be approximately equal to the emf of the battery in 
both cases. If the length L doubles, the current is half because i = nAuE  (the other properties 
don’t change). 

Exp 18.19 – The current with two bulbs is a little more than half (about 0.7) of the current with 
one bulb. With a single bulb and more current, the light bulb heats up and its electron mobility 
(u) decreases. Again, the resistance of the wires doesn’t matter much.  

Exp 18.22 – The current should be double when the cross sectional area is double. Since the 
length of the wire is the same, the electric field is the same size: E = emf L. The electron current 
is i = nAuE  and the mobility u does not change much.  

Exp 18.23 –  
(a) The bulbs are brighter when they are in parallel than when they are in series, because 

they have the whole potential difference of the battery in that case. 
(b) Unscrewing one of the bulbs in parallel has little effect on the other one. We’ll worry 

about the slight difference in the next chapter when we have a better model of the battery.  
(c) Predictions  
(d) Should find that i A = 2iB =2iC = iD . About half of the current goes through each of the 

identical light bulbs.  

Exp 18.24 – Doubling the emf should result in double the current. 
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Resistance 

This chapter, “A Microscopic View of Electric Circuits” has focused on building a solid, largely 
qualitative, fundamental picture of what’s going on in circuits.  If you’ve had physics before, and 
had an ‘electronics’ section, it probably didn’t start off with a microscopic perspective, and thus 
it was presented as an independent science unto itself.  Hopefully this chapter has helped to 
position electronics appropriately in the larger framework of physics.  The next chapter will keep 
its fundamental, microscopic basis, but also scale up.  Here’s a little step in that direction.     

Q: How does ∆V across a circuit element (stretch of wire, say,) relate to the electric field in it? 

 ELV −=∆  

Q: How does the conventional current through a circuit element (stretch of wire, say,) relate to 
the electric field in it? 

 qnAuEvqnAI ==  

So, both voltage and current are proportional to field, solving for field in both and setting them 
equal to each other gives 









−=∆⇒−==

∆
qnAu

L
IV

qnAu
I

E
L
V

 

That’s perhaps a familiar form.  The stuff in brackets, how long the wire is, how thick it is, how 
mobile charge carriers are,… determines how much current flows when you’ve got a given 
voltage drop motivating it.  The stuff in brackets defines the Resistance of the circuit element. 









=

qnAu
L

R  

IRV −=∆  

 


