Electric Field of a Uniformly Charged Ring

note: Cylindrical Symmetry suggests Cylindrical Coordinates

Step 1: cut up charge distribution and *draw* it's contribution to the field: ΔE

r_o

 $\vec{r} = \vec{r}_0 - \vec{r}$

- **Step 2**: write an expression for ΔE
- **Step 3**: Add up all ΔE 's to get the total E

Electric Field of a Uniformly

$$Charged Ring$$

$$\vec{E} = \sum_{ring} \Delta \vec{E}$$
where

$$\Delta \vec{E} = \frac{1}{4pe_o} \frac{\Delta q}{(r^2 + z_o^2)^{\frac{3}{2}}} \langle -r \cos q, -r \sin q, z_o \rangle$$
So

$$\vec{E} = \sum_{ring} \frac{\Delta q}{(r^2 + z_o^2)^{\frac{3}{2}}} \langle -r \cos q, -r \sin q, z_o \rangle$$
Step 1: cut up charge distribution and
draw it's contribution to the field: $\Delta \vec{E}$
To make an integral, need a $\Delta \theta$.

Step 2: write an expression for ΔE

Step 3: Add up all ΔE 's to get the total E

$$\frac{\Delta q}{\Delta \boldsymbol{qr}} = \frac{q}{2\boldsymbol{pr}} \Longrightarrow \Delta q = \frac{q}{2\boldsymbol{p}} \Delta \boldsymbol{q}$$

thus

$$\vec{E} = \sum_{q=0}^{q=2p} \frac{\frac{1}{4pe_o}}{\frac{1}{(r^2 + z_o^2)^{3/2}}} \langle -r\cos q, -r\sin q, z_o \rangle$$

Electric Field of a Uniformly **Charged Disk** R

Step 1: cut up charge distribution and S *draw* it's contribution to the field: ΔE

z

- **Step 2**: write an expression for ΔE
- **Step 3**: Add up all ΔE 's to get the total E

Step 4: Check results

 \vec{r}

Disk = nested rings

$$\Delta E_{z} = \frac{1}{4pe_{0}} \frac{q_{ring}z_{o}}{(\mathbf{r}^{2} + z_{o}^{2})^{3/2}}$$
where

$$q_{ring} = Q \frac{(\text{area of ring})}{(\text{area of disk})} = Q \frac{2pr\Delta t}{pR^{2}}$$
distribution and
the field: ΔE
ssion for ΔE
s to get the total E

$$\Delta E_{z} = \frac{1}{4pe_{0}} \frac{\left(Q \frac{2pr\Delta r}{pR^{2}}\right)z_{o}}{(\mathbf{r}^{2} + z_{o}^{2})^{3/2}}$$

Electric Field of a Uniformly Charged Disk

Disk = nested rings

 ΔE

Step 1: cut up charge distribution and s *draw* it's contribution to the field: ΔE

z

Step 2: write an expression for ΔE

Step 3: Add up all ΔE 's to get the total E

Step 4: Check results

 \vec{r}

where

$$q_{ring} = Q \frac{(\text{area of ring})}{(\text{area of disk})} = Q \frac{2\mathbf{p}\mathbf{r}\Delta\mathbf{r}}{\mathbf{p}R^2}$$
so

$$\Delta E_z = \frac{1}{4\mathbf{p}\mathbf{e}_0} \frac{\left(Q \frac{2\mathbf{p}\mathbf{r}\Delta\mathbf{r}}{\mathbf{p}R^2}\right)z_o}{\left(\mathbf{r}^2 + z_o^2\right)^{3/2}}$$

$$\Delta E_z = \frac{1}{2\mathbf{e}_0} \frac{Q}{\mathbf{p}R^2} \frac{z_o \mathbf{r}\Delta\mathbf{r}}{\left(\mathbf{r}^2 + z_o^2\right)^{3/2}}$$

 $\Delta E_{z} = \frac{1}{4pe_{0}} \frac{q_{ring} z_{o}}{(r^{2} + z_{o}^{2})^{3/2}}$

Step 1: cut up charge distribution and *draw* it's contribution to the field: ΔE

- **Step 2**: write an expression for ΔE
- **Step 3**: Add up all ΔE 's to get the total E

$$E_{z} = \sum_{r=0}^{r=R} \frac{1}{2e_{0}} \frac{Q}{pR^{2}} \frac{z_{o} r\Delta r}{(r^{2} + z_{o}^{2})^{3/2}}$$
$$E_{z} = \frac{1}{2e_{0}} \frac{Qz_{o}}{pR^{2}} \int_{r=0}^{r=R} \frac{rdr}{(r^{2} + z_{o}^{2})^{3/2}}$$

Step 1: cut up charge distribution and *draw* it's contribution to the field: ΔE

Step 2: write an expression for ΔE

Step 3: Add up all ΔE 's to get the total E

Step 4: Check results

 $u_{\min} = z_o^2$ $u_{\max} = R^2 + z_o^2$ Differential bit becomes

$$du \equiv 2 r dr \Longrightarrow r dr = \frac{1}{2} du$$

Integral becomes

$$E_{z} = \frac{1}{4\boldsymbol{e}_{0}} \frac{Qz_{o}}{\boldsymbol{p}R^{2}} \int_{u=z_{o}^{2}}^{u=R^{2}+z_{o}^{2}} \frac{du}{u^{3/2}} = \frac{1}{4\boldsymbol{e}_{0}} \frac{Qz_{o}}{\boldsymbol{p}R^{2}} \left(\frac{-2}{u^{1/2}}\right)_{u=z_{o}^{2}}^{u=R^{2}+z_{o}^{2}}$$

Units? Logic? Limits?

Step 1: cut up charge distribution and *draw* it's contribution to the field: ΔE

- **Step 2**: write an expression for ΔE
- **Step 3**: Add up all ΔE 's to get the total E