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Fri 

4.6-.7, .9-.10 Stress, Strain, Young’s Modulus, Compression, Sound                   
InStove @ noon         Science Poster Session: Hedco7pm~9pm 
L4: Young’s Modulus & Speed of Sound  (Read 4.11-.12) 
4.11-.12; .14-.15 Sound in Solids, Analytical Solutions  Quiz 3 
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4.8, .13 Friction and Buoyancy & Suction 
  
 
 
Exam 1 (Ch 1-4) 

RE 4.d 
EP 4, HW4: Ch 4 Pr’s  
46, 50, 81, 88 & CP 
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Spring in Series & Parallel Rephrased 
Stress, Strain, and Young’s Modulus 
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Two wires with equal lengths are 
made of pure copper.  The diameter 
of wire A is twice the diameter of 
wire B. 
  
When 6 kg masses are hung on the 
wires, wire B stretches more than 
wire A.  
Y = (F/A)/(DL/L) = k/d 

You make careful measurements 
and compute Young's modulus 
for both wires. What do you 
find? 
  

1) YA > YB 
2) YA = YB 
3) YA < YB 



Example: You hang a heavy ball with a mass of 14 kg from a silver rod 
2.6m long by 1.5 mm by 3.1mm.  You measure a stretch of the rod, and 
find that the rod stretched 0.002898 m.  Using these experimental data, 
what value of Young’s modulus do you get? 
 
The density of silver is 10.5 g/cm3 and you can look up its atomic mass.  
What’s the inter-atomic spring stiffness? 
 



Speed of Sound in a Solid: the logic 
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Speed of Sound in a Solid 
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Stiffer, for a given atomic displacement, greater 
force pulling it so greater velocity achieved.  

More distance between atoms means further the distortion 
can propagate just through the light weight spring /bond 
without encountering the resistance of massive atoms.  

More massive, more inertial resistance to 
applied force, less velocity achieved.  
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Example: The spring constant of aluminum is about 16 N/m.  The 
typical separation of Al atoms was 2.6×10-10m.  Recall also that the 
atomic mass of aluminum is 27 g/mole. So what is the speed of sound 
in Aluminum? 
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Microscopic to Macroscopic Springs 
Molecule Solid 
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Case Study in Three Modes of Exploration with 
Varying Force:  Mass on Spring 
Experimentation / Observation 



Case Study in Three Modes of Exploration with 
Varying Force:  Mass on Spring 
Experimentation / Observation 

Observations to Understand 
• force, velocity, and position vary sinusoidally 
• force and position vary in synch 
• velocity varies out-of-synch 
• Period’s dependence 

• Mass - greater mass, slower 
• Stiffness - greater stiffness, faster 
• Amplitude     – no effect !  

Computation / Simulation 

Observations to Understand 
• Changing gravity only changes center of 

oscillation 
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ball.pos = ball.pos +   
           (ball.p/ball.m)*deltat 



Finite changes to infinitesimal changes: derivatives 



Case Study in Three Modes of Exploration with 
Varying Force:  Mass on Spring 
Theory / Analysis 
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Case Study in Three Modes of Exploration with 
Varying Force:  Mass on Spring 
Theory / Analysis 
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Case Study in Three Modes of Exploration with 
Varying Force:  Mass on Spring 
Theory / Analysis 
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Concisely tells us… 

• Sinusoidally oscillates 
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• With a period that… 

• Shortens with greater stiffness 

• Lengthens with larger masses 

• Doesn’t care about amplitude 



Period dependence on: mass 
 
Suppose the period of a 
spring-mass oscillator is 1 s. 
What will be the period if we 
double the mass? 

 
a. T = 0.5 s 
b. T = 0.7 s 
c. T = 1.0 s 
d. T = 1.4 s 
e. T = 2.0 s 
  



Period dependence on Stiffness: 
 
Suppose the period of a spring-mass 
oscillator is 1 s. What will be the period if 
we double the spring stiffness? (We could 
use a stiffer spring, or we could attach the 
mass to two springs.) 
  

 
 

a. T = 0.5 s 
b. T = 0.7 s 
c. T = 1.0 s 
d. T = 1.4 s 
e. T = 2.0 s 



Period Dependence on Amplitude: 
 
Suppose the period of a spring-mass oscillator 
is 1 s with an amplitude of 5 cm. What will be 
the period if we increase the amplitude to 10 
cm, so that the total distance traveled in one 
period is twice as large? 

 
 
1) T = 0.5 s 
2) T = 0.7 s 
3) T = 1.0 s 
4) T = 1.4 s 
5) T = 2.0 s 



Case Study in Three Modes of Exploration with 
Varying Force:  Mass on Spring 
Theory / Analysis 

System: Ball 
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Case Study in Three Modes of Exploration with 
Varying Force:  Mass on Spring 
Theory / Analysis 
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• Exact same form as for horizontal mass-spring, but 
shifted equilibrium 
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Solution: 



Period dependence on g: 
 
Suppose the period of a spring-mass 
oscillator is 1 s with an amplitude of 
5 cm. What will be the period if we 
take the oscillator to a massive 
planet where g = 19.6 N/kg? 

 
 
1) T = 0.5 s 
2) T = 0.7 s 
3) T = 1.0 s 
4) T = 1.4 s 
5) T = 2.0 s 



Speed of Sound in a Solid: 
the result 

d d 

n-1 n n+1 

x 

xn-1 

n-1 n n+1 

xn xn+1 

)2( 11, nnnsnetn xxxkF  

)2( 11 nnns
n xxxk

dt

dp
 

 
)2( 11 nnns

n xxxk
dt

mvd
 

)2( 11 nnn
s

n

xxx
m

k

dt

dt

dx
d














Speed of Sound in a Solid: the logic 
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Speed of Sound in a Solid 
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Stiffer, for a given atomic displacement, greater 
force pulling it so greater velocity achieved.  

More distance between atoms means further the distortion 
can propagate just through the light weight spring /bond 
without encountering the resistance of massive atoms.  

More massive, more inertial resistance to 
applied force, less velocity achieved.  





Period dependence on: mass 
 
Suppose the period of a 
spring-mass oscillator is 1 s. 
What will be the period if we 
double the mass? 

 
a. T = 0.5 s 
b. T = 0.7 s 
c. T = 1.0 s 
d. T = 1.4 s 
e. T = 2.0 s 
  



Period dependence on Stiffness: 
 
Suppose the period of a spring-mass 
oscillator is 1 s. What will be the period if 
we double the spring stiffness? (We could 
use a stiffer spring, or we could attach the 
mass to two springs.) 
  

 
 

a. T = 0.5 s 
b. T = 0.7 s 
c. T = 1.0 s 
d. T = 1.4 s 
e. T = 2.0 s 



Period Dependence on Amplitude: 
 
Suppose the period of a spring-mass oscillator 
is 1 s with an amplitude of 5 cm. What will be 
the period if we increase the amplitude to 10 
cm, so that the total distance traveled in one 
period is twice as large? 

 
 
1) T = 0.5 s 
2) T = 0.7 s 
3) T = 1.0 s 
4) T = 1.4 s 
5) T = 2.0 s 



Period dependence on g: 
 
Suppose the period of a spring-mass 
oscillator is 1 s with an amplitude of 
5 cm. What will be the period if we 
take the oscillator to a massive 
planet where g = 19.6 N/kg? 

 
 
1) T = 0.5 s 
2) T = 0.7 s 
3) T = 1.0 s 
4) T = 1.4 s 
5) T = 2.0 s 
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