Today	Ch 31	The Nuclear Atom	HW29Redo; HW31
Monday	Ch 31	The Nuclear Atom & Review	HW 30Redo; HW32
Lab	9 Radioactivity		

This Time

Issues of Identity: The other Quantum Numbers & the Exclusion Principle

- *n*: Principle quantum number.
- *l*: Orbital quantum number.
- m_l : Magnetic quantum number.
- o m_s: Spin quantum number.

Orbital shapes

- Quantum numbers and identity
 - Pauli Exclusion Principle
 - Orbital Occupancies

orbital n =1	Two electrons allowed
orbital n =2	Eight electrons allowed

Example1: orbital n = 3...How many electrons could have n = 3?

Order of Occupancy – Orbital Energies

Transition

- Ch 31 Nuclear Physics and Radioactivity
- **31.1** Nuclear Structure
 - Nucleons.
 - o **Proton**
 - Neutron
 - Vocab
 - Z: Atomic Number, distinguish atomic elements
 - N: Neutron Number, distinguish isotopes
 - A: Atomic Mass Number, distinguishes mass
 - Nuclear Notation
- **31.2** The Strong Nuclear Force and the stability of the Nucleus
 - Electric Interactions
 - Gravitational Interactions
 - The Strong Force
 - Quark model of Nucleons
 - Strong Force & Color
 - Nuclear Strong Force & Color Tri-poles
 - Stability: Short range Strong vs. long range Electric
 - Small nucleus tightly bound.

• Large nucleus – weakly bound. Role of neutrons in holding it all together.

HW32

Ch 30

24. Say that it is determined for a particular electronic state that the possible values for the magnetic quantum number m_l are -4, -3, -2, -1, 0, 1, 2, 3, and 4. Determine the orbital quantum number, l, and the smallest possible value of the principal quantum number, n.

Ch 31

2. In electrically neutral atoms, how many (a) protons are in the uranium $^{238}_{92}$ U nucleus, (b) neutrons are in the mercury $^{202}_{80}$ Hg nucleus, and (c) electrons are in orbit about the niobium $^{93}_{41}$ Nb nucleus?

You'll need to read ahead in chapter 31 for these next two.

•

- 14. Find the binding energy (in MeV) for lithium ${}^{7}_{3}$ Li (atomic mass = 7.016003 u). Find the mass difference ('mass defect') between an intact Li atom and the sum of its parts: its constituent electrons and protons (collectively, hydrogen atoms) and neutrons. Then use Einstein's mass-energy relationship to find how this mass difference's equivalent amount of energy.
 - 18. Complete the following decay processes by stating what the symbol "X" represents $(X = a, b^-, b^+, \text{ or } \gamma)$: (a) ${}^{211}_{82}$ Pb $\rightarrow {}^{211}_{83}$ Bi+X, (b) ${}^{11}_{6}$ C $\rightarrow {}^{11}_{5}$ B+X, (c) ${}^{231}_{90}$ Th $^* \rightarrow {}^{231}_{90}$ Th +X, and (d) ${}^{210}_{84}$ Po $\rightarrow {}^{206}_{82}$ Pb+X. Note: in nuclear notation $a = {}^{4}_{2}a$, $b^- = {}^{0}_{-1}e$, and $b^+ = {}^{0}_{+1}e$.